{"title":"结合语音特征的深度神经网络攻击检测","authors":"Noussaiba Jaafar, Z. Lachiri","doi":"10.1109/ATSIP49331.2020.9231791","DOIUrl":null,"url":null,"abstract":"Predicting the intensity level of aggression is a challenging problem in surveillance applications. Since there are no trivial fusion rules or classifiers, we developed a fusion framework to accomplish this complex task using Deep Neural Networks. This framework used a low level that contains the audio-visual features, an intermediate level composed of a set of concepts (meta-features) and a high level which is a final evaluation of the multimodal aggression detection. In this paper, we study the prediction of multimodal level for aggression detection and both Context and Semantics meta-features. This prediction is based on the audio modality using sensor and semantic information. Using meta-features for the semantic part of speech, we show the added value of such extra-information on the fusion process when the situations are more complicated. We also propose to use different text-based features such as linguistic and word affect features that will provide significant results for predicting the two meta-features and the multimodal aggression level using Deep Neural Networks when they are fused with the acoustic features although the nature of spontaneous speech.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Combining Speech Features for Aggression Detection Using Deep Neural Networks\",\"authors\":\"Noussaiba Jaafar, Z. Lachiri\",\"doi\":\"10.1109/ATSIP49331.2020.9231791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the intensity level of aggression is a challenging problem in surveillance applications. Since there are no trivial fusion rules or classifiers, we developed a fusion framework to accomplish this complex task using Deep Neural Networks. This framework used a low level that contains the audio-visual features, an intermediate level composed of a set of concepts (meta-features) and a high level which is a final evaluation of the multimodal aggression detection. In this paper, we study the prediction of multimodal level for aggression detection and both Context and Semantics meta-features. This prediction is based on the audio modality using sensor and semantic information. Using meta-features for the semantic part of speech, we show the added value of such extra-information on the fusion process when the situations are more complicated. We also propose to use different text-based features such as linguistic and word affect features that will provide significant results for predicting the two meta-features and the multimodal aggression level using Deep Neural Networks when they are fused with the acoustic features although the nature of spontaneous speech.\",\"PeriodicalId\":384018,\"journal\":{\"name\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP49331.2020.9231791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining Speech Features for Aggression Detection Using Deep Neural Networks
Predicting the intensity level of aggression is a challenging problem in surveillance applications. Since there are no trivial fusion rules or classifiers, we developed a fusion framework to accomplish this complex task using Deep Neural Networks. This framework used a low level that contains the audio-visual features, an intermediate level composed of a set of concepts (meta-features) and a high level which is a final evaluation of the multimodal aggression detection. In this paper, we study the prediction of multimodal level for aggression detection and both Context and Semantics meta-features. This prediction is based on the audio modality using sensor and semantic information. Using meta-features for the semantic part of speech, we show the added value of such extra-information on the fusion process when the situations are more complicated. We also propose to use different text-based features such as linguistic and word affect features that will provide significant results for predicting the two meta-features and the multimodal aggression level using Deep Neural Networks when they are fused with the acoustic features although the nature of spontaneous speech.