基于蝴蝶图像的细粒度复杂图像分类方法

Yiping Rong, Han Su, Wenxin Zhang, Zhongyan Li
{"title":"基于蝴蝶图像的细粒度复杂图像分类方法","authors":"Yiping Rong, Han Su, Wenxin Zhang, Zhongyan Li","doi":"10.1109/ACAIT56212.2022.10137872","DOIUrl":null,"url":null,"abstract":"Fine-grained image classification is very difficult task and there is currently no effective machine learning method yet. Taking the butterfly images as an example, this paper comprehensively studies image classification methods for finegrained and complex images, focusing on improving the existing methods in the four aspects of image preprocessing, feature extraction, feature coding, and classifier design. An effective machine learning method for butterfly classification is established. In the aspect of image preprocessing, we firstly introduce the edge breakpoint connection method to make up for the defect that discontinuous edge can’t extract the target region effectively. In terms of feature extraction, nonseparable Shannon wavelet is used to combine with corner feature, blob feature, edge curvature feature and invariant moment feature selection to further improve the utilization of image information. In the aspect of feature encoding, most features in this paper are encoded by histogram, which increases the classification efficiency, and for histogram encoding features, an improved histogram intersection distance is proposed, which makes it more effective in KNN classifier. Finally, in the classifier design, the Bagging ensemble method is integrated into the parallel KNN classifier. Experiments show the effectiveness and robustness of the proposed method.","PeriodicalId":398228,"journal":{"name":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","volume":"275 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-Grained Complex Image Classification Method Based on Butterfly Images\",\"authors\":\"Yiping Rong, Han Su, Wenxin Zhang, Zhongyan Li\",\"doi\":\"10.1109/ACAIT56212.2022.10137872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fine-grained image classification is very difficult task and there is currently no effective machine learning method yet. Taking the butterfly images as an example, this paper comprehensively studies image classification methods for finegrained and complex images, focusing on improving the existing methods in the four aspects of image preprocessing, feature extraction, feature coding, and classifier design. An effective machine learning method for butterfly classification is established. In the aspect of image preprocessing, we firstly introduce the edge breakpoint connection method to make up for the defect that discontinuous edge can’t extract the target region effectively. In terms of feature extraction, nonseparable Shannon wavelet is used to combine with corner feature, blob feature, edge curvature feature and invariant moment feature selection to further improve the utilization of image information. In the aspect of feature encoding, most features in this paper are encoded by histogram, which increases the classification efficiency, and for histogram encoding features, an improved histogram intersection distance is proposed, which makes it more effective in KNN classifier. Finally, in the classifier design, the Bagging ensemble method is integrated into the parallel KNN classifier. Experiments show the effectiveness and robustness of the proposed method.\",\"PeriodicalId\":398228,\"journal\":{\"name\":\"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)\",\"volume\":\"275 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACAIT56212.2022.10137872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACAIT56212.2022.10137872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细粒度图像分类是一项非常困难的任务,目前还没有有效的机器学习方法。本文以蝴蝶图像为例,对细粒度和复杂图像的图像分类方法进行了全面研究,重点从图像预处理、特征提取、特征编码、分类器设计四个方面对现有方法进行了改进。建立了一种有效的蝴蝶分类机器学习方法。在图像预处理方面,首先引入边缘断点连接方法,弥补了边缘不连续不能有效提取目标区域的缺陷;在特征提取方面,采用不可分香农小波结合角点特征、斑点特征、边缘曲率特征和不变矩特征选择,进一步提高了图像信息的利用率。在特征编码方面,本文大部分特征采用直方图编码,提高了分类效率,对于直方图编码特征,提出了改进的直方图相交距离,使其在KNN分类器中更加有效。最后,在分类器设计中,将Bagging集成方法集成到并行KNN分类器中。实验证明了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-Grained Complex Image Classification Method Based on Butterfly Images
Fine-grained image classification is very difficult task and there is currently no effective machine learning method yet. Taking the butterfly images as an example, this paper comprehensively studies image classification methods for finegrained and complex images, focusing on improving the existing methods in the four aspects of image preprocessing, feature extraction, feature coding, and classifier design. An effective machine learning method for butterfly classification is established. In the aspect of image preprocessing, we firstly introduce the edge breakpoint connection method to make up for the defect that discontinuous edge can’t extract the target region effectively. In terms of feature extraction, nonseparable Shannon wavelet is used to combine with corner feature, blob feature, edge curvature feature and invariant moment feature selection to further improve the utilization of image information. In the aspect of feature encoding, most features in this paper are encoded by histogram, which increases the classification efficiency, and for histogram encoding features, an improved histogram intersection distance is proposed, which makes it more effective in KNN classifier. Finally, in the classifier design, the Bagging ensemble method is integrated into the parallel KNN classifier. Experiments show the effectiveness and robustness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信