{"title":"椭圆型K3曲面模的紧化:稳定对和环面","authors":"V. Alexeev, Adrian Brunyate, P. Engel","doi":"10.2140/gt.2022.26.3525","DOIUrl":null,"url":null,"abstract":"We describe two geometrically meaningful compactifications of the moduli space of elliptic K3 surfaces via stable slc pairs, for two different choices of a polarizing divisor, and show that their normalizations are two different toroidal compactifications of the moduli space.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Compactifications of moduli of elliptic K3 surfaces: Stable pair and toroidal\",\"authors\":\"V. Alexeev, Adrian Brunyate, P. Engel\",\"doi\":\"10.2140/gt.2022.26.3525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe two geometrically meaningful compactifications of the moduli space of elliptic K3 surfaces via stable slc pairs, for two different choices of a polarizing divisor, and show that their normalizations are two different toroidal compactifications of the moduli space.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.3525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.3525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compactifications of moduli of elliptic K3 surfaces: Stable pair and toroidal
We describe two geometrically meaningful compactifications of the moduli space of elliptic K3 surfaces via stable slc pairs, for two different choices of a polarizing divisor, and show that their normalizations are two different toroidal compactifications of the moduli space.