基于模板的分段仿射回归

Guillaume O. Berger, S. Sankaranarayanan
{"title":"基于模板的分段仿射回归","authors":"Guillaume O. Berger, S. Sankaranarayanan","doi":"10.48550/arXiv.2305.08686","DOIUrl":null,"url":null,"abstract":"We investigate the problem of fitting piecewise affine functions (PWA) to data. Our algorithm divides the input domain into finitely many polyhedral regions whose shapes are specified using a user-defined template such that the data points in each region are fit by an affine function within a desired error bound. We first prove that this problem is NP-hard. Next, we present a top-down algorithm that considers subsets of the overall data set in a systematic manner, trying to fit an affine function for each subset using linear regression. If regression fails on a subset, we extract a minimal set of points that led to a failure in order to split the original index set into smaller subsets. Using a combination of this top-down scheme and a set covering algorithm, we derive an overall approach that is optimal in terms of the number of pieces of the resulting PWA model. We demonstrate our approach on two numerical examples that include PWA approximations of a widely used nonlinear insulin--glucose regulation model and a double inverted pendulum with soft contacts.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Template-Based Piecewise Affine Regression\",\"authors\":\"Guillaume O. Berger, S. Sankaranarayanan\",\"doi\":\"10.48550/arXiv.2305.08686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the problem of fitting piecewise affine functions (PWA) to data. Our algorithm divides the input domain into finitely many polyhedral regions whose shapes are specified using a user-defined template such that the data points in each region are fit by an affine function within a desired error bound. We first prove that this problem is NP-hard. Next, we present a top-down algorithm that considers subsets of the overall data set in a systematic manner, trying to fit an affine function for each subset using linear regression. If regression fails on a subset, we extract a minimal set of points that led to a failure in order to split the original index set into smaller subsets. Using a combination of this top-down scheme and a set covering algorithm, we derive an overall approach that is optimal in terms of the number of pieces of the resulting PWA model. We demonstrate our approach on two numerical examples that include PWA approximations of a widely used nonlinear insulin--glucose regulation model and a double inverted pendulum with soft contacts.\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.08686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.08686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了分段仿射函数(PWA)对数据的拟合问题。我们的算法将输入域划分为有限多个多面体区域,这些区域的形状使用用户自定义模板指定,使得每个区域中的数据点在期望的误差范围内由仿射函数拟合。我们首先证明了这个问题是np困难的。接下来,我们提出了一种自上而下的算法,该算法以系统的方式考虑整个数据集的子集,试图使用线性回归为每个子集拟合仿射函数。如果回归在一个子集上失败,我们提取导致失败的最小点集,以便将原始索引集分成更小的子集。结合使用这种自上而下的方案和集合覆盖算法,我们得出了一种总体方法,该方法在得到的PWA模型的片段数量方面是最优的。我们通过两个数值例子展示了我们的方法,其中包括广泛使用的非线性胰岛素-葡萄糖调节模型的PWA近似和具有软接触的双倒立摆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Template-Based Piecewise Affine Regression
We investigate the problem of fitting piecewise affine functions (PWA) to data. Our algorithm divides the input domain into finitely many polyhedral regions whose shapes are specified using a user-defined template such that the data points in each region are fit by an affine function within a desired error bound. We first prove that this problem is NP-hard. Next, we present a top-down algorithm that considers subsets of the overall data set in a systematic manner, trying to fit an affine function for each subset using linear regression. If regression fails on a subset, we extract a minimal set of points that led to a failure in order to split the original index set into smaller subsets. Using a combination of this top-down scheme and a set covering algorithm, we derive an overall approach that is optimal in terms of the number of pieces of the resulting PWA model. We demonstrate our approach on two numerical examples that include PWA approximations of a widely used nonlinear insulin--glucose regulation model and a double inverted pendulum with soft contacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信