基于ROS的停车机器人改进全局路径规划算法研究

Li Yan, Lixin Qi, Kan Feiran, Chen Guang, Chen Xinbo
{"title":"基于ROS的停车机器人改进全局路径规划算法研究","authors":"Li Yan, Lixin Qi, Kan Feiran, Chen Guang, Chen Xinbo","doi":"10.1109/CVCI51460.2020.9338469","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved global path planning algorithm to generate the optimal global path that satisfies the kinematic constraints of parking robots. The estimation function is improved through BP neural network, which improves the planning efficiency of finding the shortest path. Improve the drivability of the planned route by setting up the prohibited area and the route backtracking. A simulation platform is built based on ROS, and the path planning effect of the traditional A* algorithm is compared with the effect of the improved global path planning algorithm. The results show that the improved algorithm has a shorter path length and better drivability. The overall deviation of the simulated trajectory driving along this path is small. The improved algorithm is used to conduct multiple terminal path planning experiments. The results show that the total length of the path generated by the algorithm is close to the global optimum, the path is smooth and easy to track.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Study of Improved Global Path Planning Algorithm for Parking Robot Based on ROS\",\"authors\":\"Li Yan, Lixin Qi, Kan Feiran, Chen Guang, Chen Xinbo\",\"doi\":\"10.1109/CVCI51460.2020.9338469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an improved global path planning algorithm to generate the optimal global path that satisfies the kinematic constraints of parking robots. The estimation function is improved through BP neural network, which improves the planning efficiency of finding the shortest path. Improve the drivability of the planned route by setting up the prohibited area and the route backtracking. A simulation platform is built based on ROS, and the path planning effect of the traditional A* algorithm is compared with the effect of the improved global path planning algorithm. The results show that the improved algorithm has a shorter path length and better drivability. The overall deviation of the simulated trajectory driving along this path is small. The improved algorithm is used to conduct multiple terminal path planning experiments. The results show that the total length of the path generated by the algorithm is close to the global optimum, the path is smooth and easy to track.\",\"PeriodicalId\":119721,\"journal\":{\"name\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI51460.2020.9338469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种改进的全局路径规划算法,以生成满足停车机器人运动约束的最优全局路径。通过BP神经网络对估计函数进行改进,提高了寻找最短路径的规划效率。通过设置禁区和路线回溯,提高规划路线的可行驶性。建立了基于ROS的仿真平台,对比了传统A*算法与改进全局路径规划算法的路径规划效果。结果表明,改进算法具有更短的路径长度和更好的驾驶性能。仿真轨迹沿此路径行驶的总体偏差较小。利用改进算法进行了多终端路径规划实验。结果表明,该算法生成的路径总长度接近全局最优,路径光滑,易于跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Improved Global Path Planning Algorithm for Parking Robot Based on ROS
This paper proposes an improved global path planning algorithm to generate the optimal global path that satisfies the kinematic constraints of parking robots. The estimation function is improved through BP neural network, which improves the planning efficiency of finding the shortest path. Improve the drivability of the planned route by setting up the prohibited area and the route backtracking. A simulation platform is built based on ROS, and the path planning effect of the traditional A* algorithm is compared with the effect of the improved global path planning algorithm. The results show that the improved algorithm has a shorter path length and better drivability. The overall deviation of the simulated trajectory driving along this path is small. The improved algorithm is used to conduct multiple terminal path planning experiments. The results show that the total length of the path generated by the algorithm is close to the global optimum, the path is smooth and easy to track.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信