基于粗糙熵的分类数据聚类数据标注方法

G. Sreenivasulu, S. Raju, N. Rao
{"title":"基于粗糙熵的分类数据聚类数据标注方法","authors":"G. Sreenivasulu, S. Raju, N. Rao","doi":"10.1109/ICECCE.2014.7086654","DOIUrl":null,"url":null,"abstract":"Clustering is one of the most important method in data mining. Clustering a huge data set is difficult and time taking process. In this scenario a new method proposed that is based on Rough Entropy for improving efficiency of clustering and labeling the unlabeled data points in clusters. Data Labeling is a simple process in numerical domain but not in categorical domain. Why because distance is a major parameter in numerical whereas not in categorical attributes. So, In this paper proposed a new method for data labeling using Rough Entropy for clustering categorical data attributes. This method is mainly divided into two phases. Phase-1 is aimed to find the partition with respect to attributes and phase-II is to find the Rough Entropy to know the node importance for data labeling.","PeriodicalId":223751,"journal":{"name":"2014 International Conference on Electronics, Communication and Computational Engineering (ICECCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data Labeling method based on Rough Entropy for categorical data clustering\",\"authors\":\"G. Sreenivasulu, S. Raju, N. Rao\",\"doi\":\"10.1109/ICECCE.2014.7086654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is one of the most important method in data mining. Clustering a huge data set is difficult and time taking process. In this scenario a new method proposed that is based on Rough Entropy for improving efficiency of clustering and labeling the unlabeled data points in clusters. Data Labeling is a simple process in numerical domain but not in categorical domain. Why because distance is a major parameter in numerical whereas not in categorical attributes. So, In this paper proposed a new method for data labeling using Rough Entropy for clustering categorical data attributes. This method is mainly divided into two phases. Phase-1 is aimed to find the partition with respect to attributes and phase-II is to find the Rough Entropy to know the node importance for data labeling.\",\"PeriodicalId\":223751,\"journal\":{\"name\":\"2014 International Conference on Electronics, Communication and Computational Engineering (ICECCE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electronics, Communication and Computational Engineering (ICECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCE.2014.7086654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electronics, Communication and Computational Engineering (ICECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCE.2014.7086654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

聚类是数据挖掘中最重要的方法之一。对一个庞大的数据集进行聚类是一个困难且耗时的过程。针对这种情况,提出了一种基于粗糙熵的聚类方法来提高聚类效率,并对聚类中未标记的数据点进行标记。数据标注在数值领域是一个简单的过程,而在范畴领域则不是。为什么?因为距离在数值属性中是一个主要参数,而在分类属性中不是。为此,本文提出了一种利用粗糙熵对分类数据属性进行聚类的数据标注方法。该方法主要分为两个阶段。阶段1的目标是找到属性的划分,阶段2的目标是找到粗糙熵来知道节点的重要性,以便进行数据标注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Labeling method based on Rough Entropy for categorical data clustering
Clustering is one of the most important method in data mining. Clustering a huge data set is difficult and time taking process. In this scenario a new method proposed that is based on Rough Entropy for improving efficiency of clustering and labeling the unlabeled data points in clusters. Data Labeling is a simple process in numerical domain but not in categorical domain. Why because distance is a major parameter in numerical whereas not in categorical attributes. So, In this paper proposed a new method for data labeling using Rough Entropy for clustering categorical data attributes. This method is mainly divided into two phases. Phase-1 is aimed to find the partition with respect to attributes and phase-II is to find the Rough Entropy to know the node importance for data labeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信