基于cfar制导的卷积神经网络的大规模场景SAR舰船检测

Zikang Shao, Xiaoling Zhang, Xiaowo Xu, Tianjiao Zeng, Tianwen Zhang, Jun Shi
{"title":"基于cfar制导的卷积神经网络的大规模场景SAR舰船检测","authors":"Zikang Shao, Xiaoling Zhang, Xiaowo Xu, Tianjiao Zeng, Tianwen Zhang, Jun Shi","doi":"10.1109/RadarConf2351548.2023.10149747","DOIUrl":null,"url":null,"abstract":"Ship target detection in large scene synthetic aperture radar (SAR) image is a very challenging work. Compared with traditional constant false alarm rate (CFAR) detector, detectors based on convolution neural networks (CNNs) perform better. However, there are still two defects ‐1) Small ship targets make it hard to extract ship features, and 2) Totally abandon traditional methods leads to the increasement of positioning-risk. In order to solve these problems, we propose a SAR ship detection network which combines CFAR and CNN, called CFAR-guided Convolution Neural Network (CG-CNN). CG-CNN realizes the fusion of CFAR and CNN at the original image level and feature level, and enhances the guiding role of CFAR detection for CNN detection. Detection results on Large-Scale SAR Ship Detection Dataset-v1.0 show that CG-CNN has the best detection performance.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFAR-guided Convolution Neural Network for Large Scale Scene SAR Ship Detection\",\"authors\":\"Zikang Shao, Xiaoling Zhang, Xiaowo Xu, Tianjiao Zeng, Tianwen Zhang, Jun Shi\",\"doi\":\"10.1109/RadarConf2351548.2023.10149747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ship target detection in large scene synthetic aperture radar (SAR) image is a very challenging work. Compared with traditional constant false alarm rate (CFAR) detector, detectors based on convolution neural networks (CNNs) perform better. However, there are still two defects ‐1) Small ship targets make it hard to extract ship features, and 2) Totally abandon traditional methods leads to the increasement of positioning-risk. In order to solve these problems, we propose a SAR ship detection network which combines CFAR and CNN, called CFAR-guided Convolution Neural Network (CG-CNN). CG-CNN realizes the fusion of CFAR and CNN at the original image level and feature level, and enhances the guiding role of CFAR detection for CNN detection. Detection results on Large-Scale SAR Ship Detection Dataset-v1.0 show that CG-CNN has the best detection performance.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大场景合成孔径雷达(SAR)图像中的舰船目标检测是一项非常具有挑战性的工作。与传统的恒虚警率检测器(CFAR)相比,基于卷积神经网络(cnn)的检测器性能更好。然而,该方法仍然存在两个缺陷:1)船舶目标较小,难以提取船舶特征;2)完全抛弃传统方法,导致定位风险增加。为了解决这些问题,我们提出了一种结合CFAR和CNN的SAR船舶检测网络,称为CFAR引导卷积神经网络(CG-CNN)。CG-CNN在原始图像级和特征级实现了CFAR与CNN的融合,增强了CFAR检测对CNN检测的指导作用。在大尺度SAR船舶检测数据集v1.0上的检测结果表明,CG-CNN具有最佳的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFAR-guided Convolution Neural Network for Large Scale Scene SAR Ship Detection
Ship target detection in large scene synthetic aperture radar (SAR) image is a very challenging work. Compared with traditional constant false alarm rate (CFAR) detector, detectors based on convolution neural networks (CNNs) perform better. However, there are still two defects ‐1) Small ship targets make it hard to extract ship features, and 2) Totally abandon traditional methods leads to the increasement of positioning-risk. In order to solve these problems, we propose a SAR ship detection network which combines CFAR and CNN, called CFAR-guided Convolution Neural Network (CG-CNN). CG-CNN realizes the fusion of CFAR and CNN at the original image level and feature level, and enhances the guiding role of CFAR detection for CNN detection. Detection results on Large-Scale SAR Ship Detection Dataset-v1.0 show that CG-CNN has the best detection performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信