结合偏微分方程滤波和粒子群优化的生物医学噪声图像分割

S. Lahmiri, M. Boukadoum
{"title":"结合偏微分方程滤波和粒子群优化的生物医学噪声图像分割","authors":"S. Lahmiri, M. Boukadoum","doi":"10.1109/LASCAS.2016.7451085","DOIUrl":null,"url":null,"abstract":"This paper presents a sequential system to jointly denoise and segment an image contaminated with Gaussian noise. A fourth-order partial differential equation (PDE) filter is used for noise cancelling and particle swarm optimization (PSO) is used for segmentation. The system was tested on a chest X-ray image corrupted with different levels of Gaussian noise and, based on the Jaccard and Dice statistics, the proposed system outperformed nine other hybrid models that denoise and then segment the filtered image.","PeriodicalId":129875,"journal":{"name":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Combined partial differential equation filtering and particle swarm optimization for noisy biomedical image segmentation\",\"authors\":\"S. Lahmiri, M. Boukadoum\",\"doi\":\"10.1109/LASCAS.2016.7451085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a sequential system to jointly denoise and segment an image contaminated with Gaussian noise. A fourth-order partial differential equation (PDE) filter is used for noise cancelling and particle swarm optimization (PSO) is used for segmentation. The system was tested on a chest X-ray image corrupted with different levels of Gaussian noise and, based on the Jaccard and Dice statistics, the proposed system outperformed nine other hybrid models that denoise and then segment the filtered image.\",\"PeriodicalId\":129875,\"journal\":{\"name\":\"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LASCAS.2016.7451085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2016.7451085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种对高斯噪声污染的图像进行联合去噪和分割的顺序系统。采用四阶偏微分方程(PDE)滤波进行噪声消除,采用粒子群优化(PSO)进行分割。该系统在一张被不同程度高斯噪声破坏的胸部x射线图像上进行了测试,基于Jaccard和Dice统计,该系统优于其他九种混合模型,这些模型先去噪后分割过滤后的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined partial differential equation filtering and particle swarm optimization for noisy biomedical image segmentation
This paper presents a sequential system to jointly denoise and segment an image contaminated with Gaussian noise. A fourth-order partial differential equation (PDE) filter is used for noise cancelling and particle swarm optimization (PSO) is used for segmentation. The system was tested on a chest X-ray image corrupted with different levels of Gaussian noise and, based on the Jaccard and Dice statistics, the proposed system outperformed nine other hybrid models that denoise and then segment the filtered image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信