协同推荐中基于内容类型的适应

Y. Choi
{"title":"协同推荐中基于内容类型的适应","authors":"Y. Choi","doi":"10.1145/2663761.2666034","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an adaptive and collaborative recommendation method based on content type, which can enhance performance considerably in practice. Conventional collaborative recommendations are troubled with no or little effective rating information for newly comers or even some old users so that they often work poorly. In order to relax such cold start or sparse rating information problems, we employ a user-content type matrix with relatively higher density than commonly-used user-content matrix. By using user-content_type matrix, we evaluate user's preference for a content type and then reflect it to the final prediction of content preference in collaborative recommendation. In such a way, our method adaptively combines content preference with content type preference. In experiments, we identify notable performance improvement compared to traditional collaborative recommendation methods in terms of MAE (Mean Absolute Error) and coverage.","PeriodicalId":120340,"journal":{"name":"Research in Adaptive and Convergent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Content type based adaptation in collaborative recommendation\",\"authors\":\"Y. Choi\",\"doi\":\"10.1145/2663761.2666034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an adaptive and collaborative recommendation method based on content type, which can enhance performance considerably in practice. Conventional collaborative recommendations are troubled with no or little effective rating information for newly comers or even some old users so that they often work poorly. In order to relax such cold start or sparse rating information problems, we employ a user-content type matrix with relatively higher density than commonly-used user-content matrix. By using user-content_type matrix, we evaluate user's preference for a content type and then reflect it to the final prediction of content preference in collaborative recommendation. In such a way, our method adaptively combines content preference with content type preference. In experiments, we identify notable performance improvement compared to traditional collaborative recommendation methods in terms of MAE (Mean Absolute Error) and coverage.\",\"PeriodicalId\":120340,\"journal\":{\"name\":\"Research in Adaptive and Convergent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2663761.2666034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663761.2666034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于内容类型的自适应协同推荐方法,该方法在实践中可以显著提高推荐性能。对于新用户甚至一些老用户来说,传统的协作推荐没有或很少有有效的评级信息,因此它们的效果往往很差。为了缓解这种冷启动或稀疏评级信息问题,我们采用了比常用的用户内容矩阵密度更高的用户内容类型矩阵。通过使用user-content_type矩阵来评估用户对某一内容类型的偏好,并将其反映到协同推荐中最终的内容偏好预测中。通过这种方式,我们的方法自适应地结合了内容偏好和内容类型偏好。在实验中,我们发现与传统的协作推荐方法相比,在MAE(平均绝对误差)和覆盖率方面有显著的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content type based adaptation in collaborative recommendation
In this paper, we propose an adaptive and collaborative recommendation method based on content type, which can enhance performance considerably in practice. Conventional collaborative recommendations are troubled with no or little effective rating information for newly comers or even some old users so that they often work poorly. In order to relax such cold start or sparse rating information problems, we employ a user-content type matrix with relatively higher density than commonly-used user-content matrix. By using user-content_type matrix, we evaluate user's preference for a content type and then reflect it to the final prediction of content preference in collaborative recommendation. In such a way, our method adaptively combines content preference with content type preference. In experiments, we identify notable performance improvement compared to traditional collaborative recommendation methods in terms of MAE (Mean Absolute Error) and coverage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信