Solikhin Solikhin, Y. Sumanto, Abdul Aziz
{"title":"SEMINORM PADA RUANG FUNGSI TERINTEGRAL DUNFORD","authors":"Solikhin Solikhin, Y. Sumanto, Abdul Aziz","doi":"10.14710/JFMA.V2I1.30","DOIUrl":null,"url":null,"abstract":"This article discussed the seminorm on Dunford integrable functional space. We show that the set of all Dunford integrable functions is linear space. The results were shown that $\\left( D[a,b],\\ \\left\\| \\ \\cdot \\  \\right\\| \\right)$ is a seminorm space with function defined by $\\left\\| f \\right\\|=\\underset{\\begin{smallmatrix}  {{x}^{*}}\\in {{X}^{*}} \\\\  \\left\\| {{x}^{*}} \\right\\|\\le 1 \\end{smallmatrix}}{\\mathop{\\sup }}\\,\\ \\left\\{ \\underset{E\\subset [a,b]}{\\mathop{\\sup }}\\,\\,\\left| \\left( L \\right)\\int\\limits_{E}{{{x}^{*}}f} \\right| \\right\\}$. Furthermore, $\\left( D[a,b],\\ d \\right)$ is a pseudomatrix space with function defined by $d\\left( f,g \\right)=\\left\\| f-g \\right\\|=\\underset{\\begin{smallmatrix}  {{x}^{*}}\\in {{X}^{*}} \\\\  \\left\\| {{x}^{*}} \\right\\|\\le 1 \\end{smallmatrix}}{\\mathop{\\sup }}\\,\\ \\left\\{ \\underset{E\\subset [a,b]}{\\mathop{\\sup }}\\,\\,\\left| \\left( L \\right)\\int\\limits_{E}{{{x}^{*}}\\left( f-g \\right)} \\right| \\right\\}$.","PeriodicalId":359074,"journal":{"name":"Journal of Fundamental Mathematics and Applications (JFMA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental Mathematics and Applications (JFMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JFMA.V2I1.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了关于Dunford可积泛函空间的研讨会。我们证明了所有邓福德可积函数的集合是线性空间。结果表明:$\left( D[a,b],\ \left\| \ \cdot \  \right\| \right)$是一个半精空间,其函数定义为$\left\| f \right\|=\underset{\begin{smallmatrix}  {{x}^{*}}\in {{X}^{*}} \\  \left\| {{x}^{*}} \right\|\le 1 \end{smallmatrix}}{\mathop{\sup }}\,\ \left\{ \underset{E\subset [a,b]}{\mathop{\sup }}\,\,\left| \left( L \right)\int\limits_{E}{{{x}^{*}}f} \right| \right\}$。更进一步,$\left( D[a,b],\ d \right)$是一个伪矩阵空间,其函数定义为$d\left( f,g \right)=\left\| f-g \right\|=\underset{\begin{smallmatrix}  {{x}^{*}}\in {{X}^{*}} \\  \left\| {{x}^{*}} \right\|\le 1 \end{smallmatrix}}{\mathop{\sup }}\,\ \left\{ \underset{E\subset [a,b]}{\mathop{\sup }}\,\,\left| \left( L \right)\int\limits_{E}{{{x}^{*}}\left( f-g \right)} \right| \right\}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SEMINORM PADA RUANG FUNGSI TERINTEGRAL DUNFORD
This article discussed the seminorm on Dunford integrable functional space. We show that the set of all Dunford integrable functions is linear space. The results were shown that $\left( D[a,b],\ \left\| \ \cdot \  \right\| \right)$ is a seminorm space with function defined by $\left\| f \right\|=\underset{\begin{smallmatrix}  {{x}^{*}}\in {{X}^{*}} \\  \left\| {{x}^{*}} \right\|\le 1 \end{smallmatrix}}{\mathop{\sup }}\,\ \left\{ \underset{E\subset [a,b]}{\mathop{\sup }}\,\,\left| \left( L \right)\int\limits_{E}{{{x}^{*}}f} \right| \right\}$. Furthermore, $\left( D[a,b],\ d \right)$ is a pseudomatrix space with function defined by $d\left( f,g \right)=\left\| f-g \right\|=\underset{\begin{smallmatrix}  {{x}^{*}}\in {{X}^{*}} \\  \left\| {{x}^{*}} \right\|\le 1 \end{smallmatrix}}{\mathop{\sup }}\,\ \left\{ \underset{E\subset [a,b]}{\mathop{\sup }}\,\,\left| \left( L \right)\int\limits_{E}{{{x}^{*}}\left( f-g \right)} \right| \right\}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信