{"title":"SEMINORM PADA RUANG FUNGSI TERINTEGRAL DUNFORD","authors":"Solikhin Solikhin, Y. Sumanto, Abdul Aziz","doi":"10.14710/JFMA.V2I1.30","DOIUrl":null,"url":null,"abstract":"This article discussed the seminorm on Dunford integrable functional space. We show that the set of all Dunford integrable functions is linear space. The results were shown that $\\left( D[a,b],\\ \\left\\| \\ \\cdot \\ \\right\\| \\right)$ is a seminorm space with function defined by $\\left\\| f \\right\\|=\\underset{\\begin{smallmatrix} {{x}^{*}}\\in {{X}^{*}} \\\\ \\left\\| {{x}^{*}} \\right\\|\\le 1 \\end{smallmatrix}}{\\mathop{\\sup }}\\,\\ \\left\\{ \\underset{E\\subset [a,b]}{\\mathop{\\sup }}\\,\\,\\left| \\left( L \\right)\\int\\limits_{E}{{{x}^{*}}f} \\right| \\right\\}$. Furthermore, $\\left( D[a,b],\\ d \\right)$ is a pseudomatrix space with function defined by $d\\left( f,g \\right)=\\left\\| f-g \\right\\|=\\underset{\\begin{smallmatrix} {{x}^{*}}\\in {{X}^{*}} \\\\ \\left\\| {{x}^{*}} \\right\\|\\le 1 \\end{smallmatrix}}{\\mathop{\\sup }}\\,\\ \\left\\{ \\underset{E\\subset [a,b]}{\\mathop{\\sup }}\\,\\,\\left| \\left( L \\right)\\int\\limits_{E}{{{x}^{*}}\\left( f-g \\right)} \\right| \\right\\}$.","PeriodicalId":359074,"journal":{"name":"Journal of Fundamental Mathematics and Applications (JFMA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental Mathematics and Applications (JFMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JFMA.V2I1.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This article discussed the seminorm on Dunford integrable functional space. We show that the set of all Dunford integrable functions is linear space. The results were shown that $\left( D[a,b],\ \left\| \ \cdot \ \right\| \right)$ is a seminorm space with function defined by $\left\| f \right\|=\underset{\begin{smallmatrix} {{x}^{*}}\in {{X}^{*}} \\ \left\| {{x}^{*}} \right\|\le 1 \end{smallmatrix}}{\mathop{\sup }}\,\ \left\{ \underset{E\subset [a,b]}{\mathop{\sup }}\,\,\left| \left( L \right)\int\limits_{E}{{{x}^{*}}f} \right| \right\}$. Furthermore, $\left( D[a,b],\ d \right)$ is a pseudomatrix space with function defined by $d\left( f,g \right)=\left\| f-g \right\|=\underset{\begin{smallmatrix} {{x}^{*}}\in {{X}^{*}} \\ \left\| {{x}^{*}} \right\|\le 1 \end{smallmatrix}}{\mathop{\sup }}\,\ \left\{ \underset{E\subset [a,b]}{\mathop{\sup }}\,\,\left| \left( L \right)\int\limits_{E}{{{x}^{*}}\left( f-g \right)} \right| \right\}$.