大数据产权确认技术综述

Su Cheng, Haijun Zhao
{"title":"大数据产权确认技术综述","authors":"Su Cheng, Haijun Zhao","doi":"10.1145/3193063.3193069","DOIUrl":null,"url":null,"abstract":"The major premise of big data circulation is to identify the ownership of data resource. This paper summed some feasible techniques and methods for confirming big data property which are data citation technology, data provenance technology, data reversible hiding technology, computer forensic technology and block chain technology. The ownership of information property which from different sizes, different formats and different storage condition on distributed heterogeneous platforms can be confirmed by comprehensive application of these techniques and methods based on the coupling interface between them in the practice of big data.","PeriodicalId":429317,"journal":{"name":"Proceedings of the 2018 International Conference on Intelligent Information Technology","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Overview of Techniques for Confirming Big Data Property Rights\",\"authors\":\"Su Cheng, Haijun Zhao\",\"doi\":\"10.1145/3193063.3193069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The major premise of big data circulation is to identify the ownership of data resource. This paper summed some feasible techniques and methods for confirming big data property which are data citation technology, data provenance technology, data reversible hiding technology, computer forensic technology and block chain technology. The ownership of information property which from different sizes, different formats and different storage condition on distributed heterogeneous platforms can be confirmed by comprehensive application of these techniques and methods based on the coupling interface between them in the practice of big data.\",\"PeriodicalId\":429317,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Intelligent Information Technology\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Intelligent Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3193063.3193069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Intelligent Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3193063.3193069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

大数据流通的大前提是数据资源的归属。本文总结了一些可行的大数据属性确认技术和方法,分别是数据引用技术、数据溯源技术、数据可逆隐藏技术、计算机取证技术和区块链技术。在大数据实践中,基于这些技术和方法之间的耦合接口,综合运用这些技术和方法来确定分布式异构平台上不同大小、不同格式、不同存储条件的信息属性的归属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Overview of Techniques for Confirming Big Data Property Rights
The major premise of big data circulation is to identify the ownership of data resource. This paper summed some feasible techniques and methods for confirming big data property which are data citation technology, data provenance technology, data reversible hiding technology, computer forensic technology and block chain technology. The ownership of information property which from different sizes, different formats and different storage condition on distributed heterogeneous platforms can be confirmed by comprehensive application of these techniques and methods based on the coupling interface between them in the practice of big data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信