眼部疾病的深度学习检测

N. Narayanan
{"title":"眼部疾病的深度学习检测","authors":"N. Narayanan","doi":"10.55041/isjem01296","DOIUrl":null,"url":null,"abstract":"Abstract—Ophthalmic diseases, such as cataract, glaucoma, and diabetic retinopathy, are significant causes of visual impairment and blindness. Early and accurate detection of these diseases plays a crucial role in ensuring timely interventions and improved patient outcomes. In this paper, we propose a deep learning-based approach for ophthalmic disease detection using the VGG-19 algorithm. A dataset comprising images of various ophthalmic diseases and normal eyes was collected from Kaggle. The dataset was preprocessed, and the VGG-19 model was trained on the labeled images. Performance evaluation was conducted using standard metrics, including accuracy, precision, recall, and F1-score. The results demonstrate the efficacy of the proposed approach in accurately identifying ophthalmic diseases. The VGG-19 model, with its deep architecture and convolutional neural networks, showcases strong performance in image classification tasks. This approach holds promise for assisting healthcare professionals in the early detection and management of ophthalmic diseases. Further improvements and enhancements, such as increasing the dataset size and incorporating additional disease classes, can be explored to refine the model's performance. The proposed methodology has the potential to contribute to the development of automated ophthalmic disease detection systems, thereby facilitating timely interventions and improving patient care. Keywords: Deep Learning,Convolutional Neural Networks(CNN),VGG-19.","PeriodicalId":285811,"journal":{"name":"International Scientific Journal of Engineering and Management","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OPHTHALMIC DISEASE DETECTION USING DEEP LEARNING\",\"authors\":\"N. Narayanan\",\"doi\":\"10.55041/isjem01296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract—Ophthalmic diseases, such as cataract, glaucoma, and diabetic retinopathy, are significant causes of visual impairment and blindness. Early and accurate detection of these diseases plays a crucial role in ensuring timely interventions and improved patient outcomes. In this paper, we propose a deep learning-based approach for ophthalmic disease detection using the VGG-19 algorithm. A dataset comprising images of various ophthalmic diseases and normal eyes was collected from Kaggle. The dataset was preprocessed, and the VGG-19 model was trained on the labeled images. Performance evaluation was conducted using standard metrics, including accuracy, precision, recall, and F1-score. The results demonstrate the efficacy of the proposed approach in accurately identifying ophthalmic diseases. The VGG-19 model, with its deep architecture and convolutional neural networks, showcases strong performance in image classification tasks. This approach holds promise for assisting healthcare professionals in the early detection and management of ophthalmic diseases. Further improvements and enhancements, such as increasing the dataset size and incorporating additional disease classes, can be explored to refine the model's performance. The proposed methodology has the potential to contribute to the development of automated ophthalmic disease detection systems, thereby facilitating timely interventions and improving patient care. Keywords: Deep Learning,Convolutional Neural Networks(CNN),VGG-19.\",\"PeriodicalId\":285811,\"journal\":{\"name\":\"International Scientific Journal of Engineering and Management\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Scientific Journal of Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55041/isjem01296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Scientific Journal of Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55041/isjem01296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:白内障、青光眼、糖尿病性视网膜病变等眼病是导致视力损害和失明的重要原因。早期和准确发现这些疾病在确保及时干预和改善患者预后方面发挥着至关重要的作用。在本文中,我们提出了一种基于深度学习的眼部疾病检测方法,该方法使用VGG-19算法。从Kaggle收集了包括各种眼科疾病和正常眼睛图像的数据集。对数据集进行预处理,对标记后的图像进行VGG-19模型的训练。使用标准指标进行性能评估,包括准确性、精密度、召回率和f1评分。结果表明,该方法能准确识别眼部疾病。VGG-19模型具有深度架构和卷积神经网络,在图像分类任务中表现出强大的性能。这种方法有希望协助医疗保健专业人员在眼科疾病的早期发现和管理。可以探索进一步的改进和增强,例如增加数据集大小和纳入额外的疾病类别,以改进模型的性能。所提出的方法有潜力促进自动化眼科疾病检测系统的发展,从而促进及时干预和改善患者护理。关键词:深度学习,卷积神经网络(CNN),VGG-19
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OPHTHALMIC DISEASE DETECTION USING DEEP LEARNING
Abstract—Ophthalmic diseases, such as cataract, glaucoma, and diabetic retinopathy, are significant causes of visual impairment and blindness. Early and accurate detection of these diseases plays a crucial role in ensuring timely interventions and improved patient outcomes. In this paper, we propose a deep learning-based approach for ophthalmic disease detection using the VGG-19 algorithm. A dataset comprising images of various ophthalmic diseases and normal eyes was collected from Kaggle. The dataset was preprocessed, and the VGG-19 model was trained on the labeled images. Performance evaluation was conducted using standard metrics, including accuracy, precision, recall, and F1-score. The results demonstrate the efficacy of the proposed approach in accurately identifying ophthalmic diseases. The VGG-19 model, with its deep architecture and convolutional neural networks, showcases strong performance in image classification tasks. This approach holds promise for assisting healthcare professionals in the early detection and management of ophthalmic diseases. Further improvements and enhancements, such as increasing the dataset size and incorporating additional disease classes, can be explored to refine the model's performance. The proposed methodology has the potential to contribute to the development of automated ophthalmic disease detection systems, thereby facilitating timely interventions and improving patient care. Keywords: Deep Learning,Convolutional Neural Networks(CNN),VGG-19.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信