具有容差数据的聚类有效性度量

Y. Hamasuna, Y. Endo, S. Miyamoto
{"title":"具有容差数据的聚类有效性度量","authors":"Y. Hamasuna, Y. Endo, S. Miyamoto","doi":"10.1109/FUZZY.2010.5584371","DOIUrl":null,"url":null,"abstract":"Cluster validity measures are used in order to determine an appropriate number of clusters and evaluate cluster partitions obtained by clustering algorithms. When we handle a set of data, data contains inherent uncertainty e.g., errors, ranges or some missing value of attributes. The concept of tolerance has been proposed from the viewpoint of handling such uncertain data. In this paper, we introduce clustering algorithms for data with tolerance. Moreover, we propose new five measures for data with tolerance, that is, the determinants and the traces of fuzzy covariance matrices, the Xie-Beni's index, the Fukuyama-Sugeno's index, and the Davies-Bouldin's index. We compare the performance of conventional ones with their tolerance versions. We found that our proposed measures takes smaller value than conventional ones. These results indicate tolerance based clustering method is suitable for handling uncertain data.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cluster validity measures for data with tolerance\",\"authors\":\"Y. Hamasuna, Y. Endo, S. Miyamoto\",\"doi\":\"10.1109/FUZZY.2010.5584371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster validity measures are used in order to determine an appropriate number of clusters and evaluate cluster partitions obtained by clustering algorithms. When we handle a set of data, data contains inherent uncertainty e.g., errors, ranges or some missing value of attributes. The concept of tolerance has been proposed from the viewpoint of handling such uncertain data. In this paper, we introduce clustering algorithms for data with tolerance. Moreover, we propose new five measures for data with tolerance, that is, the determinants and the traces of fuzzy covariance matrices, the Xie-Beni's index, the Fukuyama-Sugeno's index, and the Davies-Bouldin's index. We compare the performance of conventional ones with their tolerance versions. We found that our proposed measures takes smaller value than conventional ones. These results indicate tolerance based clustering method is suitable for handling uncertain data.\",\"PeriodicalId\":377799,\"journal\":{\"name\":\"International Conference on Fuzzy Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2010.5584371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

聚类有效性度量用于确定适当的聚类数量和评估聚类算法获得的聚类分区。当我们处理一组数据时,数据包含固有的不确定性,例如错误、范围或某些属性的缺失值。从处理这类不确定数据的角度,提出了容差的概念。本文介绍了容差数据的聚类算法。在此基础上,提出了模糊协方差矩阵的行行式和迹线、Xie-Beni指数、Fukuyama-Sugeno指数和Davies-Bouldin指数这五种新的容差数据度量方法。我们比较了常规版本和它们的公差版本的性能。我们发现我们提出的测量值比传统的测量值要小。结果表明,基于容差的聚类方法适用于处理不确定数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster validity measures for data with tolerance
Cluster validity measures are used in order to determine an appropriate number of clusters and evaluate cluster partitions obtained by clustering algorithms. When we handle a set of data, data contains inherent uncertainty e.g., errors, ranges or some missing value of attributes. The concept of tolerance has been proposed from the viewpoint of handling such uncertain data. In this paper, we introduce clustering algorithms for data with tolerance. Moreover, we propose new five measures for data with tolerance, that is, the determinants and the traces of fuzzy covariance matrices, the Xie-Beni's index, the Fukuyama-Sugeno's index, and the Davies-Bouldin's index. We compare the performance of conventional ones with their tolerance versions. We found that our proposed measures takes smaller value than conventional ones. These results indicate tolerance based clustering method is suitable for handling uncertain data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信