多元线性回归和随机森林对房价估计的性能分析

Sukma Ayu Septianingrum, M. Alfian Dzikri, M. Soeleman, Pujiono Pujiono, M. Muslih
{"title":"多元线性回归和随机森林对房价估计的性能分析","authors":"Sukma Ayu Septianingrum, M. Alfian Dzikri, M. Soeleman, Pujiono Pujiono, M. Muslih","doi":"10.1109/iSemantic55962.2022.9920454","DOIUrl":null,"url":null,"abstract":"The house is a human need for boards. House prices that continue to rise every year make it difficult for some people to buy a house according to their respective financial capabilities. Many property developers in big cities continue to build housing, including the South Jakarta area with many new arrivals. In this study, we will predict house prices using a comparison of 2 methods, multiple linear regression and random forest which produces a better RMSE value at an 8:2 comparison between training data and testing data, and the multiple linear regression method produces fewer errors. The 8:2 experiment produces an RMSE 3673441811.575 of Linear Regression and 3693111743.726 of Random Forest.","PeriodicalId":360042,"journal":{"name":"2022 International Seminar on Application for Technology of Information and Communication (iSemantic)","volume":"239 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Analysis of Multiple Linear Regression and Random Forest for an Estimate of the Price of a House\",\"authors\":\"Sukma Ayu Septianingrum, M. Alfian Dzikri, M. Soeleman, Pujiono Pujiono, M. Muslih\",\"doi\":\"10.1109/iSemantic55962.2022.9920454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The house is a human need for boards. House prices that continue to rise every year make it difficult for some people to buy a house according to their respective financial capabilities. Many property developers in big cities continue to build housing, including the South Jakarta area with many new arrivals. In this study, we will predict house prices using a comparison of 2 methods, multiple linear regression and random forest which produces a better RMSE value at an 8:2 comparison between training data and testing data, and the multiple linear regression method produces fewer errors. The 8:2 experiment produces an RMSE 3673441811.575 of Linear Regression and 3693111743.726 of Random Forest.\",\"PeriodicalId\":360042,\"journal\":{\"name\":\"2022 International Seminar on Application for Technology of Information and Communication (iSemantic)\",\"volume\":\"239 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Seminar on Application for Technology of Information and Communication (iSemantic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSemantic55962.2022.9920454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Seminar on Application for Technology of Information and Communication (iSemantic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSemantic55962.2022.9920454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

房子是人类需要的木板。房价每年都在持续上涨,这使得一些人很难根据自己的经济能力买房。大城市的许多房地产开发商继续建造住房,包括南雅加达地区,那里有许多新移民。在本研究中,我们将使用多元线性回归和随机森林两种方法的比较来预测房价,训练数据和测试数据的RMSE值为8:2,并且多元线性回归方法产生的误差更小。8:2实验得到线性回归的RMSE为3673441811.575,随机森林的RMSE为3693111743.726。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Multiple Linear Regression and Random Forest for an Estimate of the Price of a House
The house is a human need for boards. House prices that continue to rise every year make it difficult for some people to buy a house according to their respective financial capabilities. Many property developers in big cities continue to build housing, including the South Jakarta area with many new arrivals. In this study, we will predict house prices using a comparison of 2 methods, multiple linear regression and random forest which produces a better RMSE value at an 8:2 comparison between training data and testing data, and the multiple linear regression method produces fewer errors. The 8:2 experiment produces an RMSE 3673441811.575 of Linear Regression and 3693111743.726 of Random Forest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信