使用因式NML通用模型的贝叶斯网络结构学习

Teemu Roos, T. Silander, P. Kontkanen, P. Myllymäki
{"title":"使用因式NML通用模型的贝叶斯网络结构学习","authors":"Teemu Roos, T. Silander, P. Kontkanen, P. Myllymäki","doi":"10.1109/ITA.2008.4601061","DOIUrl":null,"url":null,"abstract":"Universal codes/models can be used for data compression and model selection by the minimum description length (MDL) principle. For many interesting model classes, such as Bayesian networks, the minimax regret optimal normalized maximum likelihood (NML) universal model is computationally very demanding. We suggest a computationally feasible alternative to NML for Bayesian networks, the factorized NML universal model, where the normalization is done locally for each variable. This can be seen as an approximate sum-product algorithm. We show that this new universal model performs extremely well in model selection, compared to the existing state-of-the-art, even for small sample sizes.","PeriodicalId":345196,"journal":{"name":"2008 Information Theory and Applications Workshop","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Bayesian network structure learning using factorized NML universal models\",\"authors\":\"Teemu Roos, T. Silander, P. Kontkanen, P. Myllymäki\",\"doi\":\"10.1109/ITA.2008.4601061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Universal codes/models can be used for data compression and model selection by the minimum description length (MDL) principle. For many interesting model classes, such as Bayesian networks, the minimax regret optimal normalized maximum likelihood (NML) universal model is computationally very demanding. We suggest a computationally feasible alternative to NML for Bayesian networks, the factorized NML universal model, where the normalization is done locally for each variable. This can be seen as an approximate sum-product algorithm. We show that this new universal model performs extremely well in model selection, compared to the existing state-of-the-art, even for small sample sizes.\",\"PeriodicalId\":345196,\"journal\":{\"name\":\"2008 Information Theory and Applications Workshop\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Information Theory and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2008.4601061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2008.4601061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

通用代码/模型可以通过最小描述长度(MDL)原则用于数据压缩和模型选择。对于许多有趣的模型类,如贝叶斯网络,极小极大后悔最优归一化最大似然(NML)通用模型的计算要求非常高。我们为贝叶斯网络提出了一种计算可行的NML替代方案,即因式NML通用模型,其中对每个变量进行局部归一化。这可以看作是近似的和积算法。我们表明,与现有的最先进的模型相比,这个新的通用模型在模型选择方面表现得非常好,即使是小样本量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian network structure learning using factorized NML universal models
Universal codes/models can be used for data compression and model selection by the minimum description length (MDL) principle. For many interesting model classes, such as Bayesian networks, the minimax regret optimal normalized maximum likelihood (NML) universal model is computationally very demanding. We suggest a computationally feasible alternative to NML for Bayesian networks, the factorized NML universal model, where the normalization is done locally for each variable. This can be seen as an approximate sum-product algorithm. We show that this new universal model performs extremely well in model selection, compared to the existing state-of-the-art, even for small sample sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信