基于神经网络的负荷异常预测

D. C. Park, O. Mohammed, R. Merchant, T. Dinh, C. Tong, A. Azeem, J. Farah, C. Drake
{"title":"基于神经网络的负荷异常预测","authors":"D. C. Park, O. Mohammed, R. Merchant, T. Dinh, C. Tong, A. Azeem, J. Farah, C. Drake","doi":"10.1109/ANN.1993.264346","DOIUrl":null,"url":null,"abstract":"The authors present a new approach to power load forecasting under abnormal weather conditions using artificial neural networks (ANN). Accurate forecasting for cold fronts and warm fronts is of special importance to utility companies for monetary reasons and planning reasons. Temperatures below 50 degrees F are treated as cold fronts and temperatures above 90 degrees F are treated as warm fronts in the area of interest. The architectures take into account some inherent characteristics of these days. The results obtained by using ANN have been found to give better results than other conventional techniques.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Forecasting abnormal load conditions with neural networks\",\"authors\":\"D. C. Park, O. Mohammed, R. Merchant, T. Dinh, C. Tong, A. Azeem, J. Farah, C. Drake\",\"doi\":\"10.1109/ANN.1993.264346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present a new approach to power load forecasting under abnormal weather conditions using artificial neural networks (ANN). Accurate forecasting for cold fronts and warm fronts is of special importance to utility companies for monetary reasons and planning reasons. Temperatures below 50 degrees F are treated as cold fronts and temperatures above 90 degrees F are treated as warm fronts in the area of interest. The architectures take into account some inherent characteristics of these days. The results obtained by using ANN have been found to give better results than other conventional techniques.<<ETX>>\",\"PeriodicalId\":121897,\"journal\":{\"name\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1993.264346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种利用人工神经网络(ANN)进行异常天气条件下电力负荷预测的新方法。由于资金和规划的原因,对冷锋和暖锋的准确预测对公用事业公司来说尤为重要。低于50华氏度的温度被视为冷锋,高于90华氏度的温度被视为暖锋。这些架构考虑到了当今社会的一些固有特征。使用人工神经网络获得的结果比其他传统技术得到的结果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting abnormal load conditions with neural networks
The authors present a new approach to power load forecasting under abnormal weather conditions using artificial neural networks (ANN). Accurate forecasting for cold fronts and warm fronts is of special importance to utility companies for monetary reasons and planning reasons. Temperatures below 50 degrees F are treated as cold fronts and temperatures above 90 degrees F are treated as warm fronts in the area of interest. The architectures take into account some inherent characteristics of these days. The results obtained by using ANN have been found to give better results than other conventional techniques.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信