{"title":"基于多层神经网络的锂电池SOC和SOH监测算法","authors":"Jong-Hyun Lee, Hyun-Sil Kim, Insoo Lee","doi":"10.29007/m89x","DOIUrl":null,"url":null,"abstract":"This paper presents a battery monitoring system using a multilayer neural network (MNN) for state of charge (SOC) estimation and state of health (SOH) diagnosis. In this system, the MNN utilizes experimental discharge voltage data from lithium battery operation to estimate SOH and uses present and previous voltages for SOC estimation. From experimental results, we know that the proposed battery monitoring system performs SOC estimation and SOH diagnosis well.","PeriodicalId":264035,"journal":{"name":"International Conference on Computers and Their Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOC and SOH Monitoring Algorithms for Lithium Batteries Using Multilayer Neural Networks\",\"authors\":\"Jong-Hyun Lee, Hyun-Sil Kim, Insoo Lee\",\"doi\":\"10.29007/m89x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a battery monitoring system using a multilayer neural network (MNN) for state of charge (SOC) estimation and state of health (SOH) diagnosis. In this system, the MNN utilizes experimental discharge voltage data from lithium battery operation to estimate SOH and uses present and previous voltages for SOC estimation. From experimental results, we know that the proposed battery monitoring system performs SOC estimation and SOH diagnosis well.\",\"PeriodicalId\":264035,\"journal\":{\"name\":\"International Conference on Computers and Their Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computers and Their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/m89x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/m89x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SOC and SOH Monitoring Algorithms for Lithium Batteries Using Multilayer Neural Networks
This paper presents a battery monitoring system using a multilayer neural network (MNN) for state of charge (SOC) estimation and state of health (SOH) diagnosis. In this system, the MNN utilizes experimental discharge voltage data from lithium battery operation to estimate SOH and uses present and previous voltages for SOC estimation. From experimental results, we know that the proposed battery monitoring system performs SOC estimation and SOH diagnosis well.