区间2型直觉模糊逻辑系统预测问题的优化

Imo J. Eyoh, J. Eyoh, U. Umoh, R. Kalawsky
{"title":"区间2型直觉模糊逻辑系统预测问题的优化","authors":"Imo J. Eyoh, J. Eyoh, U. Umoh, R. Kalawsky","doi":"10.1142/s146902682150022x","DOIUrl":null,"url":null,"abstract":"Derivative-based algorithms have been adopted in the literature for the optimization of membership and non-membership function parameters of interval type-2 (T2) intuitionistic fuzzy logic systems (FLSs). In this study, a non-derivative-based algorithm called sliding mode control learning algorithm is proposed to tune the parameters of interval T2 intuitionistic FLS for the first time. The proposed rule-based learning system employs the Takagi–Sugeno–Kang inference with artificial neural network to pilot the learning process. The new learning system is evaluated using some nonlinear prediction problems. Analyses of results reveal that the proposed learning apparatus outperforms its type-1 version and many existing solutions in the literature and competes favorably with others on the investigated problem instances with low cost in terms of running time.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of Interval Type-2 Intuitionistic Fuzzy Logic System for Prediction Problems\",\"authors\":\"Imo J. Eyoh, J. Eyoh, U. Umoh, R. Kalawsky\",\"doi\":\"10.1142/s146902682150022x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Derivative-based algorithms have been adopted in the literature for the optimization of membership and non-membership function parameters of interval type-2 (T2) intuitionistic fuzzy logic systems (FLSs). In this study, a non-derivative-based algorithm called sliding mode control learning algorithm is proposed to tune the parameters of interval T2 intuitionistic FLS for the first time. The proposed rule-based learning system employs the Takagi–Sugeno–Kang inference with artificial neural network to pilot the learning process. The new learning system is evaluated using some nonlinear prediction problems. Analyses of results reveal that the proposed learning apparatus outperforms its type-1 version and many existing solutions in the literature and competes favorably with others on the investigated problem instances with low cost in terms of running time.\",\"PeriodicalId\":422521,\"journal\":{\"name\":\"Int. J. Comput. Intell. Appl.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Intell. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s146902682150022x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s146902682150022x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

文献中采用基于导数的算法来优化区间2型(T2)直觉模糊逻辑系统的隶属函数和非隶属函数参数。本文首次提出了一种基于非导数的滑模控制学习算法对区间T2直觉FLS的参数进行整定。提出的基于规则的学习系统采用Takagi-Sugeno-Kang推理和人工神经网络来引导学习过程。利用一些非线性预测问题对新的学习系统进行了评估。结果分析表明,所提出的学习装置优于其类型-1版本和许多现有的文献解决方案,并且在运行时间方面具有较低的成本,在所研究的问题实例上具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Interval Type-2 Intuitionistic Fuzzy Logic System for Prediction Problems
Derivative-based algorithms have been adopted in the literature for the optimization of membership and non-membership function parameters of interval type-2 (T2) intuitionistic fuzzy logic systems (FLSs). In this study, a non-derivative-based algorithm called sliding mode control learning algorithm is proposed to tune the parameters of interval T2 intuitionistic FLS for the first time. The proposed rule-based learning system employs the Takagi–Sugeno–Kang inference with artificial neural network to pilot the learning process. The new learning system is evaluated using some nonlinear prediction problems. Analyses of results reveal that the proposed learning apparatus outperforms its type-1 version and many existing solutions in the literature and competes favorably with others on the investigated problem instances with low cost in terms of running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信