基于瓶颈csp的YoloV5改进目标检测算法

A. Hendrawan, R. Gernowo, O. Nurhayati, B. Warsito, Adi Wibowo
{"title":"基于瓶颈csp的YoloV5改进目标检测算法","authors":"A. Hendrawan, R. Gernowo, O. Nurhayati, B. Warsito, Adi Wibowo","doi":"10.1109/COMNETSAT56033.2022.9994461","DOIUrl":null,"url":null,"abstract":"Detecting objects using deep learning technology has the advantage of getting good accuracy. The accuracy obtained depends on the processing time of using deep learning technology. One object detection algorithm is called You Only Look Once (YOLO), which currently has its fifth version or Yolov5. This paper proposes the real-time object detection algorithm with a video dataset recorded on the highway using Yolov5. The increase of YOLOv5 started by adding augmentation data mosaic by the size of 480x480. We practiced the YOLOV5 - BottleNeckCSP model to detect objects and then got the object information divided into six classes. The results of using mosaic data augmentation are mAP@0.5 of 0.984, mAP@0.5-0.95 of 0.696 by the precision value of 0.95, and a recall value of 0.98. Our research framework can be applied effectively to improve the performance of object detection algorithms.","PeriodicalId":221444,"journal":{"name":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improvement Object Detection Algorithm Based on YoloV5 with BottleneckCSP\",\"authors\":\"A. Hendrawan, R. Gernowo, O. Nurhayati, B. Warsito, Adi Wibowo\",\"doi\":\"10.1109/COMNETSAT56033.2022.9994461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting objects using deep learning technology has the advantage of getting good accuracy. The accuracy obtained depends on the processing time of using deep learning technology. One object detection algorithm is called You Only Look Once (YOLO), which currently has its fifth version or Yolov5. This paper proposes the real-time object detection algorithm with a video dataset recorded on the highway using Yolov5. The increase of YOLOv5 started by adding augmentation data mosaic by the size of 480x480. We practiced the YOLOV5 - BottleNeckCSP model to detect objects and then got the object information divided into six classes. The results of using mosaic data augmentation are mAP@0.5 of 0.984, mAP@0.5-0.95 of 0.696 by the precision value of 0.95, and a recall value of 0.98. Our research framework can be applied effectively to improve the performance of object detection algorithms.\",\"PeriodicalId\":221444,\"journal\":{\"name\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMNETSAT56033.2022.9994461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMNETSAT56033.2022.9994461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用深度学习技术检测物体具有精度高的优点。所获得的精度取决于使用深度学习技术的处理时间。一种被称为You Only Look Once (YOLO)的目标检测算法,目前已经有了第五个版本,即Yolov5。本文利用Yolov5软件,提出了一种基于高速公路视频数据集的实时目标检测算法。YOLOv5的增加是从增加480 × 480大小的增强数据马赛克开始的。我们运用YOLOV5 - BottleNeckCSP模型对目标进行检测,并将目标信息划分为6类。采用马赛克数据增强的结果为mAP@0.5 = 0.984, mAP@0.5-0.95 = 0.696,精度值为0.95,召回率为0.98。我们的研究框架可以有效地应用于提高目标检测算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement Object Detection Algorithm Based on YoloV5 with BottleneckCSP
Detecting objects using deep learning technology has the advantage of getting good accuracy. The accuracy obtained depends on the processing time of using deep learning technology. One object detection algorithm is called You Only Look Once (YOLO), which currently has its fifth version or Yolov5. This paper proposes the real-time object detection algorithm with a video dataset recorded on the highway using Yolov5. The increase of YOLOv5 started by adding augmentation data mosaic by the size of 480x480. We practiced the YOLOV5 - BottleNeckCSP model to detect objects and then got the object information divided into six classes. The results of using mosaic data augmentation are mAP@0.5 of 0.984, mAP@0.5-0.95 of 0.696 by the precision value of 0.95, and a recall value of 0.98. Our research framework can be applied effectively to improve the performance of object detection algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信