{"title":"饱和多孔介质自由对流边界层流动的指数级数解法","authors":"V. Awati, N. M. Bujurke, R. B. Kudenatti","doi":"10.4236/ajcm.2011.12010","DOIUrl":null,"url":null,"abstract":"Third order nonlinear ordinary differential equation, subject to appropriate boundary conditions, arising in fluid mechanics is solved exactly using more suggestive schemes- Dirichlet series and method of stretching variables. These methods have advantages over pure numerical methods in obtaining derived quantities accurately for various values of the parameters involved at a stretch and are valid in a much larger domain compared with classical numerical schemes.","PeriodicalId":359476,"journal":{"name":"Am. J. Comput. Math.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Exponential Series Method for the Solution of Free Convection Boundary Layer Flow in a Saturated Porous Medium\",\"authors\":\"V. Awati, N. M. Bujurke, R. B. Kudenatti\",\"doi\":\"10.4236/ajcm.2011.12010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Third order nonlinear ordinary differential equation, subject to appropriate boundary conditions, arising in fluid mechanics is solved exactly using more suggestive schemes- Dirichlet series and method of stretching variables. These methods have advantages over pure numerical methods in obtaining derived quantities accurately for various values of the parameters involved at a stretch and are valid in a much larger domain compared with classical numerical schemes.\",\"PeriodicalId\":359476,\"journal\":{\"name\":\"Am. J. Comput. Math.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Am. J. Comput. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/ajcm.2011.12010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Am. J. Comput. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ajcm.2011.12010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Exponential Series Method for the Solution of Free Convection Boundary Layer Flow in a Saturated Porous Medium
Third order nonlinear ordinary differential equation, subject to appropriate boundary conditions, arising in fluid mechanics is solved exactly using more suggestive schemes- Dirichlet series and method of stretching variables. These methods have advantages over pure numerical methods in obtaining derived quantities accurately for various values of the parameters involved at a stretch and are valid in a much larger domain compared with classical numerical schemes.