小k在近线性时间内的最大k边连通子图

Thatchaphol Saranurak, Wuwei Yuan
{"title":"小k在近线性时间内的最大k边连通子图","authors":"Thatchaphol Saranurak, Wuwei Yuan","doi":"10.48550/arXiv.2307.00147","DOIUrl":null,"url":null,"abstract":"We give the first almost-linear time algorithm for computing the \\emph{maximal $k$-edge-connected subgraphs} of an undirected unweighted graph for any constant $k$. More specifically, given an $n$-vertex $m$-edge graph $G=(V,E)$ and a number $k = \\log^{o(1)}n$, we can deterministically compute in $O(m+n^{1+o(1)})$ time the unique vertex partition $\\{V_{1},\\dots,V_{z}\\}$ such that, for every $i$, $V_{i}$ induces a $k$-edge-connected subgraph while every superset $V'_{i}\\supset V_{i}$ does not. Previous algorithms with linear time work only when $k\\le2$ {[}Tarjan SICOMP'72{]}, otherwise they all require $\\Omega(m+n\\sqrt{n})$ time even when $k=3$ {[}Chechik~et~al.~SODA'17; Forster~et~al.~SODA'20{]}. Our algorithm also extends to the decremental graph setting; we can deterministically maintain the maximal $k$-edge-connected subgraphs of a graph undergoing edge deletions in $m^{1+o(1)}$ total update time. Our key idea is a reduction to the dynamic algorithm supporting pairwise $k$-edge-connectivity queries {[}Jin and Sun FOCS'20{]}.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximal k-Edge-Connected Subgraphs in Almost-Linear Time for Small k\",\"authors\":\"Thatchaphol Saranurak, Wuwei Yuan\",\"doi\":\"10.48550/arXiv.2307.00147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give the first almost-linear time algorithm for computing the \\\\emph{maximal $k$-edge-connected subgraphs} of an undirected unweighted graph for any constant $k$. More specifically, given an $n$-vertex $m$-edge graph $G=(V,E)$ and a number $k = \\\\log^{o(1)}n$, we can deterministically compute in $O(m+n^{1+o(1)})$ time the unique vertex partition $\\\\{V_{1},\\\\dots,V_{z}\\\\}$ such that, for every $i$, $V_{i}$ induces a $k$-edge-connected subgraph while every superset $V'_{i}\\\\supset V_{i}$ does not. Previous algorithms with linear time work only when $k\\\\le2$ {[}Tarjan SICOMP'72{]}, otherwise they all require $\\\\Omega(m+n\\\\sqrt{n})$ time even when $k=3$ {[}Chechik~et~al.~SODA'17; Forster~et~al.~SODA'20{]}. Our algorithm also extends to the decremental graph setting; we can deterministically maintain the maximal $k$-edge-connected subgraphs of a graph undergoing edge deletions in $m^{1+o(1)}$ total update time. Our key idea is a reduction to the dynamic algorithm supporting pairwise $k$-edge-connectivity queries {[}Jin and Sun FOCS'20{]}.\",\"PeriodicalId\":201778,\"journal\":{\"name\":\"Embedded Systems and Applications\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.00147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.00147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们给出了第一个近似线性的时间算法 \emph{最大的 $k$-边连通子图} 对于任意常数的无向无权图 $k$. 更具体地说,给定一个 $n$-顶点 $m$-边图 $G=(V,E)$ 还有一个数字 $k = \log^{o(1)}n$,我们可以确定地计算 $O(m+n^{1+o(1)})$ 对唯一顶点分区计时 $\{V_{1},\dots,V_{z}\}$ 这样,对于每一个 $i$, $V_{i}$ 诱导 $k$-边连通子图,而每个超集 $V'_{i}\supset V_{i}$ 没有。以前的线性时间算法只在 $k\le2$ {[}Tarjan SICOMP'72{]},否则它们都需要 $\Omega(m+n\sqrt{n})$ 即使是时间 $k=3$ {[}Chechik等人。苏打'17;福斯特等人。苏打水20{]}. 我们的算法还扩展到递减图设置;我们可以确定地保持最大值 $k$在中进行边删除的图的边连通子图 $m^{1+o(1)}$ 总更新时间。我们的关键思想是对支持成对的动态算法的简化 $k$edge-connectivity查询 {[}金和孙FOCS'20{]}.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal k-Edge-Connected Subgraphs in Almost-Linear Time for Small k
We give the first almost-linear time algorithm for computing the \emph{maximal $k$-edge-connected subgraphs} of an undirected unweighted graph for any constant $k$. More specifically, given an $n$-vertex $m$-edge graph $G=(V,E)$ and a number $k = \log^{o(1)}n$, we can deterministically compute in $O(m+n^{1+o(1)})$ time the unique vertex partition $\{V_{1},\dots,V_{z}\}$ such that, for every $i$, $V_{i}$ induces a $k$-edge-connected subgraph while every superset $V'_{i}\supset V_{i}$ does not. Previous algorithms with linear time work only when $k\le2$ {[}Tarjan SICOMP'72{]}, otherwise they all require $\Omega(m+n\sqrt{n})$ time even when $k=3$ {[}Chechik~et~al.~SODA'17; Forster~et~al.~SODA'20{]}. Our algorithm also extends to the decremental graph setting; we can deterministically maintain the maximal $k$-edge-connected subgraphs of a graph undergoing edge deletions in $m^{1+o(1)}$ total update time. Our key idea is a reduction to the dynamic algorithm supporting pairwise $k$-edge-connectivity queries {[}Jin and Sun FOCS'20{]}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信