{"title":"碳纤维增强聚合物作为约束增强以最大化工程竹的抗压强度:一个人工神经网络模型","authors":"W. E. Silva, D. Silva","doi":"10.1145/3571560.3571569","DOIUrl":null,"url":null,"abstract":"The type of infrastructure and selection of its materials is one of the principal factors that must be considered. Due to its usual large quantifications on projects, it directly affects the environment and communities where it belonged. And collectively, the future of our world. As a strong, versatile, durable, sustainable, and environmentally beneficial material, bamboo and its derivatives are frequently utilized since the early times; the Philippines is fortunate to have an abundance of it across the country. The mechanical properties of one of the local R&D-prioritized and market-prominent bamboo specie, the Bambusa blumeana, are remarkable and well-known to be an excellent material for many structural elements. But to fully utilize it, reinforcements may be required, just like with any other ligneous and organic materials. Extensions in its compression strength along the grain may be accomplished from its 50.83 MPa average strength by confinement-reinforcing it with the promising, adaptable, and strong Carbon-fiber-reinforced polymer (CFRP). The Artificial Neural Network (ANN) model involving CFRP's confinement reinforcement thickness, edges that constitutes the compression area, moisture content, temperature, and density of Laminated Veneer Bamboo (LVB) was established using the Levenberg-Marquardt (LM) algorithm as the training algorithm (TA) and hyperbolic tangent sigmoid as the transfer function (TF). The relationship of the variables to the composite section's ultimate compressive strength, was indirectly proportional, except for density, and was further checked the influence using Garson's algorithm (GA). In addition, the results were verified using additional physical experimentation and Finite Element (FE) simulations, while the ANN model was compared to other prediction modelling techniques, by which the FE simulation proved to be an effective complement to the physical testing and the ANN prediction model performed the best. The results also reconfirmed other literature on engineered bamboo studies; and the failure of the CFRP-LVB composite section was found to be a combination of isolated partial failures of the LVB core as the cross-sections become larger, while full crushing was observed on smaller cross-sections.","PeriodicalId":143909,"journal":{"name":"Proceedings of the 6th International Conference on Advances in Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon-Fiber-reinforced Polymer as Confinement Reinforcement to Maximize Compressive Strength of Engineered Bamboo: An Artificial Neural Network Model\",\"authors\":\"W. E. Silva, D. Silva\",\"doi\":\"10.1145/3571560.3571569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The type of infrastructure and selection of its materials is one of the principal factors that must be considered. Due to its usual large quantifications on projects, it directly affects the environment and communities where it belonged. And collectively, the future of our world. As a strong, versatile, durable, sustainable, and environmentally beneficial material, bamboo and its derivatives are frequently utilized since the early times; the Philippines is fortunate to have an abundance of it across the country. The mechanical properties of one of the local R&D-prioritized and market-prominent bamboo specie, the Bambusa blumeana, are remarkable and well-known to be an excellent material for many structural elements. But to fully utilize it, reinforcements may be required, just like with any other ligneous and organic materials. Extensions in its compression strength along the grain may be accomplished from its 50.83 MPa average strength by confinement-reinforcing it with the promising, adaptable, and strong Carbon-fiber-reinforced polymer (CFRP). The Artificial Neural Network (ANN) model involving CFRP's confinement reinforcement thickness, edges that constitutes the compression area, moisture content, temperature, and density of Laminated Veneer Bamboo (LVB) was established using the Levenberg-Marquardt (LM) algorithm as the training algorithm (TA) and hyperbolic tangent sigmoid as the transfer function (TF). The relationship of the variables to the composite section's ultimate compressive strength, was indirectly proportional, except for density, and was further checked the influence using Garson's algorithm (GA). In addition, the results were verified using additional physical experimentation and Finite Element (FE) simulations, while the ANN model was compared to other prediction modelling techniques, by which the FE simulation proved to be an effective complement to the physical testing and the ANN prediction model performed the best. The results also reconfirmed other literature on engineered bamboo studies; and the failure of the CFRP-LVB composite section was found to be a combination of isolated partial failures of the LVB core as the cross-sections become larger, while full crushing was observed on smaller cross-sections.\",\"PeriodicalId\":143909,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Advances in Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Advances in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3571560.3571569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Advances in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571560.3571569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carbon-Fiber-reinforced Polymer as Confinement Reinforcement to Maximize Compressive Strength of Engineered Bamboo: An Artificial Neural Network Model
The type of infrastructure and selection of its materials is one of the principal factors that must be considered. Due to its usual large quantifications on projects, it directly affects the environment and communities where it belonged. And collectively, the future of our world. As a strong, versatile, durable, sustainable, and environmentally beneficial material, bamboo and its derivatives are frequently utilized since the early times; the Philippines is fortunate to have an abundance of it across the country. The mechanical properties of one of the local R&D-prioritized and market-prominent bamboo specie, the Bambusa blumeana, are remarkable and well-known to be an excellent material for many structural elements. But to fully utilize it, reinforcements may be required, just like with any other ligneous and organic materials. Extensions in its compression strength along the grain may be accomplished from its 50.83 MPa average strength by confinement-reinforcing it with the promising, adaptable, and strong Carbon-fiber-reinforced polymer (CFRP). The Artificial Neural Network (ANN) model involving CFRP's confinement reinforcement thickness, edges that constitutes the compression area, moisture content, temperature, and density of Laminated Veneer Bamboo (LVB) was established using the Levenberg-Marquardt (LM) algorithm as the training algorithm (TA) and hyperbolic tangent sigmoid as the transfer function (TF). The relationship of the variables to the composite section's ultimate compressive strength, was indirectly proportional, except for density, and was further checked the influence using Garson's algorithm (GA). In addition, the results were verified using additional physical experimentation and Finite Element (FE) simulations, while the ANN model was compared to other prediction modelling techniques, by which the FE simulation proved to be an effective complement to the physical testing and the ANN prediction model performed the best. The results also reconfirmed other literature on engineered bamboo studies; and the failure of the CFRP-LVB composite section was found to be a combination of isolated partial failures of the LVB core as the cross-sections become larger, while full crushing was observed on smaller cross-sections.