FSHMEM:支持fpga上的分区全局地址空间,用于大规模硬件加速基础设施

Yashael F. Arthanto, David Ojika, Joo-Young Kim
{"title":"FSHMEM:支持fpga上的分区全局地址空间,用于大规模硬件加速基础设施","authors":"Yashael F. Arthanto, David Ojika, Joo-Young Kim","doi":"10.1109/FPL57034.2022.00042","DOIUrl":null,"url":null,"abstract":"By providing highly efficient one-sided communication with globally shared memory space, Partitioned Global Address Space (PGAS) has become one of the most promising parallel computing models in high-performance computing (HPC). Meanwhile, FPGA is getting attention as an alternative compute platform for HPC systems with the benefit of custom computing and design flexibility. However, the exploration of PGAS has not been conducted on FPGAs, unlike the traditional message passing interface. This paper proposes FSHMEM, a software/hardware framework that enables the PGAS programming model on FPGAs. We implement the core functions of GASNet specification on FPGA for native PGAS integration in hardware, while its programming interface is designed to be highly compatible with legacy software. Our experiments show that FSHMEM achieves the peak bandwidth of 3813 MB/s, which is more than 95% of the theoretical maximum, outperforming the prior works by 9.5×. It records 0.35us and 0.59us latency for remote write and read operations, respectively. Finally, we conduct a case study on the two Intel D5005 FPGA nodes integrating Intel's deep learning accelerator. The two-node system programmed by FSHMEM achieves 1.94× and 1.98× speedup for matrix multiplication and convolution operation, respectively, showing its scalability notential for HPC infrastructure.","PeriodicalId":380116,"journal":{"name":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FSHMEM: Supporting Partitioned Global Address Space on FPGAs for Large-Scale Hardware Acceleration Infrastructure\",\"authors\":\"Yashael F. Arthanto, David Ojika, Joo-Young Kim\",\"doi\":\"10.1109/FPL57034.2022.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By providing highly efficient one-sided communication with globally shared memory space, Partitioned Global Address Space (PGAS) has become one of the most promising parallel computing models in high-performance computing (HPC). Meanwhile, FPGA is getting attention as an alternative compute platform for HPC systems with the benefit of custom computing and design flexibility. However, the exploration of PGAS has not been conducted on FPGAs, unlike the traditional message passing interface. This paper proposes FSHMEM, a software/hardware framework that enables the PGAS programming model on FPGAs. We implement the core functions of GASNet specification on FPGA for native PGAS integration in hardware, while its programming interface is designed to be highly compatible with legacy software. Our experiments show that FSHMEM achieves the peak bandwidth of 3813 MB/s, which is more than 95% of the theoretical maximum, outperforming the prior works by 9.5×. It records 0.35us and 0.59us latency for remote write and read operations, respectively. Finally, we conduct a case study on the two Intel D5005 FPGA nodes integrating Intel's deep learning accelerator. The two-node system programmed by FSHMEM achieves 1.94× and 1.98× speedup for matrix multiplication and convolution operation, respectively, showing its scalability notential for HPC infrastructure.\",\"PeriodicalId\":380116,\"journal\":{\"name\":\"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL57034.2022.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL57034.2022.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分区全局地址空间(PGAS)通过提供与全局共享内存空间的高效单向通信,成为高性能计算(HPC)中最有前途的并行计算模型之一。同时,FPGA作为高性能计算系统的替代计算平台,由于其具有定制计算和设计灵活性的优点而受到关注。然而,与传统的消息传递接口不同,PGAS的探索尚未在fpga上进行。本文提出了一种软硬件框架FSHMEM,实现了fpga上的PGAS编程模型。我们在FPGA上实现GASNet规范的核心功能,以实现PGAS在硬件上的本地集成,同时其编程接口被设计为与传统软件高度兼容。实验表明,FSHMEM实现了3813 MB/s的峰值带宽,达到理论最大值的95%以上,比前人的工作提高了9.5倍。它记录远程写和读操作的延迟分别为0.35us和0.59us。FSHMEM编程的双节点系统在矩阵乘法和卷积运算上分别实现了1.94倍和1.98倍的加速,显示了其在HPC基础设施上的可扩展性潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FSHMEM: Supporting Partitioned Global Address Space on FPGAs for Large-Scale Hardware Acceleration Infrastructure
By providing highly efficient one-sided communication with globally shared memory space, Partitioned Global Address Space (PGAS) has become one of the most promising parallel computing models in high-performance computing (HPC). Meanwhile, FPGA is getting attention as an alternative compute platform for HPC systems with the benefit of custom computing and design flexibility. However, the exploration of PGAS has not been conducted on FPGAs, unlike the traditional message passing interface. This paper proposes FSHMEM, a software/hardware framework that enables the PGAS programming model on FPGAs. We implement the core functions of GASNet specification on FPGA for native PGAS integration in hardware, while its programming interface is designed to be highly compatible with legacy software. Our experiments show that FSHMEM achieves the peak bandwidth of 3813 MB/s, which is more than 95% of the theoretical maximum, outperforming the prior works by 9.5×. It records 0.35us and 0.59us latency for remote write and read operations, respectively. Finally, we conduct a case study on the two Intel D5005 FPGA nodes integrating Intel's deep learning accelerator. The two-node system programmed by FSHMEM achieves 1.94× and 1.98× speedup for matrix multiplication and convolution operation, respectively, showing its scalability notential for HPC infrastructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信