改进最小化准则的改进归一化最小均方算法

Manish D. Sawale, Ram Narayan Yadav
{"title":"改进最小化准则的改进归一化最小均方算法","authors":"Manish D. Sawale, Ram Narayan Yadav","doi":"10.1109/CICN.2011.116","DOIUrl":null,"url":null,"abstract":"In this paper we develop an improved minimization criterion for normalized least mean squares (NLMS) algorithm using past weight vectors and adaptive learning rate. The proposed criterion minimizes the summation of each squared Euclidean norm of difference between the currently updated weight vector and past weight vector. The result of the modified NLMS algorithm has lower misalignment than the conventional NLMS algorithm for various SNR. The simulation shows that the convergence rate of proposed NLMS algorithm is faster as the previous weight vectors and SNR increases.","PeriodicalId":292190,"journal":{"name":"2011 International Conference on Computational Intelligence and Communication Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Normalized Least Mean Square Algorithm with Improved Minimization Criterion\",\"authors\":\"Manish D. Sawale, Ram Narayan Yadav\",\"doi\":\"10.1109/CICN.2011.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we develop an improved minimization criterion for normalized least mean squares (NLMS) algorithm using past weight vectors and adaptive learning rate. The proposed criterion minimizes the summation of each squared Euclidean norm of difference between the currently updated weight vector and past weight vector. The result of the modified NLMS algorithm has lower misalignment than the conventional NLMS algorithm for various SNR. The simulation shows that the convergence rate of proposed NLMS algorithm is faster as the previous weight vectors and SNR increases.\",\"PeriodicalId\":292190,\"journal\":{\"name\":\"2011 International Conference on Computational Intelligence and Communication Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computational Intelligence and Communication Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN.2011.116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computational Intelligence and Communication Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2011.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用过去的权重向量和自适应学习率,提出了一种改进的归一化最小均方(NLMS)算法的最小化准则。该准则最小化了当前更新的权重向量和过去的权重向量之间的差的每个平方欧氏范数的总和。在不同信噪比下,改进的NLMS算法比传统的NLMS算法具有更低的误差。仿真结果表明,随着原权向量和信噪比的增大,所提NLMS算法的收敛速度加快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Normalized Least Mean Square Algorithm with Improved Minimization Criterion
In this paper we develop an improved minimization criterion for normalized least mean squares (NLMS) algorithm using past weight vectors and adaptive learning rate. The proposed criterion minimizes the summation of each squared Euclidean norm of difference between the currently updated weight vector and past weight vector. The result of the modified NLMS algorithm has lower misalignment than the conventional NLMS algorithm for various SNR. The simulation shows that the convergence rate of proposed NLMS algorithm is faster as the previous weight vectors and SNR increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信