一种新的图像分类潜广义dirichlet分配模型

Koffi Eddy Ihou, N. Bouguila
{"title":"一种新的图像分类潜广义dirichlet分配模型","authors":"Koffi Eddy Ihou, N. Bouguila","doi":"10.1109/IPTA.2017.8310106","DOIUrl":null,"url":null,"abstract":"As a response to the limitations of the LDA in topic modeling and large scale applications, several extensions using flexible priors have been introduced to expose the problem of topic correlation. Models such as CTM, PAM, GD-LDA, and LGDA have been able to explore and capture semantic relationships between topics. However, many of these models suffer from incomplete generative processes which affect inferences efficiency. In addition, knowing these traditional inference techniques carry major limitations, the new approach in this paper, the CVB-LGDA is an extension to the state-of-the-art. It reconciles a complete generative process to a robust inference technique in a topic correlation framework. Its performance in image classification shows its robustness.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A new latent generalized dirichlet allocation model for image classification\",\"authors\":\"Koffi Eddy Ihou, N. Bouguila\",\"doi\":\"10.1109/IPTA.2017.8310106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a response to the limitations of the LDA in topic modeling and large scale applications, several extensions using flexible priors have been introduced to expose the problem of topic correlation. Models such as CTM, PAM, GD-LDA, and LGDA have been able to explore and capture semantic relationships between topics. However, many of these models suffer from incomplete generative processes which affect inferences efficiency. In addition, knowing these traditional inference techniques carry major limitations, the new approach in this paper, the CVB-LGDA is an extension to the state-of-the-art. It reconciles a complete generative process to a robust inference technique in a topic correlation framework. Its performance in image classification shows its robustness.\",\"PeriodicalId\":316356,\"journal\":{\"name\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2017.8310106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

为了应对LDA在主题建模和大规模应用中的局限性,引入了一些使用灵活先验的扩展来暴露主题关联问题。CTM、PAM、GD-LDA和LGDA等模型已经能够探索和捕获主题之间的语义关系。然而,许多模型的生成过程不完整,影响了推理效率。此外,知道这些传统的推理技术有很大的局限性,本文中的新方法,CVB-LGDA是对最先进技术的扩展。它将完整的生成过程与主题关联框架中的鲁棒推理技术相协调。该方法在图像分类中的表现表明了其鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new latent generalized dirichlet allocation model for image classification
As a response to the limitations of the LDA in topic modeling and large scale applications, several extensions using flexible priors have been introduced to expose the problem of topic correlation. Models such as CTM, PAM, GD-LDA, and LGDA have been able to explore and capture semantic relationships between topics. However, many of these models suffer from incomplete generative processes which affect inferences efficiency. In addition, knowing these traditional inference techniques carry major limitations, the new approach in this paper, the CVB-LGDA is an extension to the state-of-the-art. It reconciles a complete generative process to a robust inference technique in a topic correlation framework. Its performance in image classification shows its robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信