{"title":"沸点:1961-1967","authors":"","doi":"10.7551/mitpress/11973.003.0013","DOIUrl":null,"url":null,"abstract":"while boiling occurs, the vapor in the bubbles will be in equilibrium with the liquid and will have a pressure equal to the vapor pressure at the boiling temperature. However, the pressure inside the bubbles must also be equal to the external pressure above the liquid. If this were not so, the bubbles would either suddenly collapse or suddenly expand. It follows therefore that when a liquid boils, the vapor pressure of the liquid is equal to the external pressure.","PeriodicalId":408501,"journal":{"name":"Dream City","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boiling Point: 1961–1967\",\"authors\":\"\",\"doi\":\"10.7551/mitpress/11973.003.0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"while boiling occurs, the vapor in the bubbles will be in equilibrium with the liquid and will have a pressure equal to the vapor pressure at the boiling temperature. However, the pressure inside the bubbles must also be equal to the external pressure above the liquid. If this were not so, the bubbles would either suddenly collapse or suddenly expand. It follows therefore that when a liquid boils, the vapor pressure of the liquid is equal to the external pressure.\",\"PeriodicalId\":408501,\"journal\":{\"name\":\"Dream City\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dream City\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7551/mitpress/11973.003.0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dream City","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7551/mitpress/11973.003.0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
while boiling occurs, the vapor in the bubbles will be in equilibrium with the liquid and will have a pressure equal to the vapor pressure at the boiling temperature. However, the pressure inside the bubbles must also be equal to the external pressure above the liquid. If this were not so, the bubbles would either suddenly collapse or suddenly expand. It follows therefore that when a liquid boils, the vapor pressure of the liquid is equal to the external pressure.