做最坏的打算,抱最好的希望:稳健的(贝叶斯)说服

Piotr Dworczak, A. Pavan
{"title":"做最坏的打算,抱最好的希望:稳健的(贝叶斯)说服","authors":"Piotr Dworczak, A. Pavan","doi":"10.2139/ssrn.3523114","DOIUrl":null,"url":null,"abstract":"We propose a robust solution concept for Bayesian persuasion that accounts for the Sender's concern that her Bayesian belief about the environment—which we call the \n conjecture—may be false. Specifically, the Sender is uncertain about the exogenous sources of information the Receivers may learn from, and about strategy selection. She first identifies all information policies that yield the largest payoff in the “worst‐case scenario,” that is, when Nature provides information and coordinates the Receivers' play to minimize the Sender's payoff. Then she uses the conjecture to pick the optimal policy among the worst‐case optimal ones. We characterize properties of robust solutions, identify conditions under which robustness requires separation of certain states, and qualify in what sense robustness calls for more information disclosure than standard Bayesian persuasion. Finally, we discuss how some of the results in the Bayesian persuasion literature change once robustness is accounted for, and develop a few new applications.\n","PeriodicalId":119201,"journal":{"name":"Microeconomics: Asymmetric & Private Information eJournal","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Preparing for the Worst but Hoping for the Best: Robust (Bayesian) Persuasion\",\"authors\":\"Piotr Dworczak, A. Pavan\",\"doi\":\"10.2139/ssrn.3523114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a robust solution concept for Bayesian persuasion that accounts for the Sender's concern that her Bayesian belief about the environment—which we call the \\n conjecture—may be false. Specifically, the Sender is uncertain about the exogenous sources of information the Receivers may learn from, and about strategy selection. She first identifies all information policies that yield the largest payoff in the “worst‐case scenario,” that is, when Nature provides information and coordinates the Receivers' play to minimize the Sender's payoff. Then she uses the conjecture to pick the optimal policy among the worst‐case optimal ones. We characterize properties of robust solutions, identify conditions under which robustness requires separation of certain states, and qualify in what sense robustness calls for more information disclosure than standard Bayesian persuasion. Finally, we discuss how some of the results in the Bayesian persuasion literature change once robustness is accounted for, and develop a few new applications.\\n\",\"PeriodicalId\":119201,\"journal\":{\"name\":\"Microeconomics: Asymmetric & Private Information eJournal\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microeconomics: Asymmetric & Private Information eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3523114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microeconomics: Asymmetric & Private Information eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3523114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

我们为贝叶斯说服提出了一个健壮的解决方案概念,它解释了发送者担心她对环境的贝叶斯信念(我们称之为猜想)可能是错误的。具体来说,发送者不确定接收者可以从中学习的外生信息来源,也不确定策略选择。她首先确定了在“最坏情况”下产生最大收益的所有信息策略,也就是说,当大自然提供信息并协调接收者的行为以最小化发送者的收益时。然后,她利用这个猜想从最坏情况下的最优策略中选择最优策略。我们描述了鲁棒性解决方案的特性,确定了鲁棒性需要分离某些状态的条件,并限定了在什么意义上鲁棒性需要比标准贝叶斯说服更多的信息披露。最后,我们讨论了贝叶斯说服文献中的一些结果在考虑鲁棒性后是如何变化的,并开发了一些新的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparing for the Worst but Hoping for the Best: Robust (Bayesian) Persuasion
We propose a robust solution concept for Bayesian persuasion that accounts for the Sender's concern that her Bayesian belief about the environment—which we call the conjecture—may be false. Specifically, the Sender is uncertain about the exogenous sources of information the Receivers may learn from, and about strategy selection. She first identifies all information policies that yield the largest payoff in the “worst‐case scenario,” that is, when Nature provides information and coordinates the Receivers' play to minimize the Sender's payoff. Then she uses the conjecture to pick the optimal policy among the worst‐case optimal ones. We characterize properties of robust solutions, identify conditions under which robustness requires separation of certain states, and qualify in what sense robustness calls for more information disclosure than standard Bayesian persuasion. Finally, we discuss how some of the results in the Bayesian persuasion literature change once robustness is accounted for, and develop a few new applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信