Lucas R. Yoshimura , Maycon Sambinelli , Cândida N. da Silva , Orlando Lee
{"title":"弧脊有向图的Linial猜想","authors":"Lucas R. Yoshimura , Maycon Sambinelli , Cândida N. da Silva , Orlando Lee","doi":"10.1016/j.entcs.2019.08.064","DOIUrl":null,"url":null,"abstract":"<div><p>A <em>path partition</em> <span><math><mi>P</mi></math></span> of a digraph <em>D</em> is a collection of directed paths such that every vertex belongs to precisely one path. Given a positive integer <em>k</em>, the <em>k</em>-norm of a path partition <span><math><mi>P</mi></math></span> of <em>D</em> is defined as <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>P</mi><mo>∈</mo><mi>P</mi></mrow></msub><mi>min</mi><mo></mo><mo>{</mo><mo>|</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span>. A path partition of a minimum <em>k</em>-norm is called <em>k</em>-optimal and its <em>k</em>-norm is denoted by <em>π</em><sub><em>k</em></sub>(<em>D</em>). A <em>stable set</em> of a digraph <em>D</em> is a subset of pairwise non-adjacent vertices of <em>V</em>(<em>D</em>). Given a positive integer <em>k</em>, we denote by <em>α</em><sub><em>k</em></sub>(<em>D</em>) the largest set of vertices of <em>D</em> that can be decomposed into <em>k</em> disjoint stable sets of <em>D</em>. In 1981, Linial conjectured that <em>π</em><sub><em>k</em></sub>(<em>D</em>) ≤ <em>α</em><sub><em>k</em></sub>(<em>D</em>) for every digraph. We say that a digraph <em>D</em> is arc-spine if <em>V</em>(<em>D</em>) can be partitioned into two sets <em>X</em> and <em>Y</em> where <em>X</em> is traceable and <em>Y</em> contains at most one arc in <em>A</em>(<em>D</em>). In this paper we show the validity of Linial's Conjecture for arc-spine digraphs.</p></div>","PeriodicalId":38770,"journal":{"name":"Electronic Notes in Theoretical Computer Science","volume":"346 ","pages":"Pages 735-746"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.064","citationCount":"2","resultStr":"{\"title\":\"Linial's Conjecture for Arc-spine Digraphs\",\"authors\":\"Lucas R. Yoshimura , Maycon Sambinelli , Cândida N. da Silva , Orlando Lee\",\"doi\":\"10.1016/j.entcs.2019.08.064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A <em>path partition</em> <span><math><mi>P</mi></math></span> of a digraph <em>D</em> is a collection of directed paths such that every vertex belongs to precisely one path. Given a positive integer <em>k</em>, the <em>k</em>-norm of a path partition <span><math><mi>P</mi></math></span> of <em>D</em> is defined as <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>P</mi><mo>∈</mo><mi>P</mi></mrow></msub><mi>min</mi><mo></mo><mo>{</mo><mo>|</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span>. A path partition of a minimum <em>k</em>-norm is called <em>k</em>-optimal and its <em>k</em>-norm is denoted by <em>π</em><sub><em>k</em></sub>(<em>D</em>). A <em>stable set</em> of a digraph <em>D</em> is a subset of pairwise non-adjacent vertices of <em>V</em>(<em>D</em>). Given a positive integer <em>k</em>, we denote by <em>α</em><sub><em>k</em></sub>(<em>D</em>) the largest set of vertices of <em>D</em> that can be decomposed into <em>k</em> disjoint stable sets of <em>D</em>. In 1981, Linial conjectured that <em>π</em><sub><em>k</em></sub>(<em>D</em>) ≤ <em>α</em><sub><em>k</em></sub>(<em>D</em>) for every digraph. We say that a digraph <em>D</em> is arc-spine if <em>V</em>(<em>D</em>) can be partitioned into two sets <em>X</em> and <em>Y</em> where <em>X</em> is traceable and <em>Y</em> contains at most one arc in <em>A</em>(<em>D</em>). In this paper we show the validity of Linial's Conjecture for arc-spine digraphs.</p></div>\",\"PeriodicalId\":38770,\"journal\":{\"name\":\"Electronic Notes in Theoretical Computer Science\",\"volume\":\"346 \",\"pages\":\"Pages 735-746\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.064\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157106611930115X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157106611930115X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
A path partition of a digraph D is a collection of directed paths such that every vertex belongs to precisely one path. Given a positive integer k, the k-norm of a path partition of D is defined as . A path partition of a minimum k-norm is called k-optimal and its k-norm is denoted by πk(D). A stable set of a digraph D is a subset of pairwise non-adjacent vertices of V(D). Given a positive integer k, we denote by αk(D) the largest set of vertices of D that can be decomposed into k disjoint stable sets of D. In 1981, Linial conjectured that πk(D) ≤ αk(D) for every digraph. We say that a digraph D is arc-spine if V(D) can be partitioned into two sets X and Y where X is traceable and Y contains at most one arc in A(D). In this paper we show the validity of Linial's Conjecture for arc-spine digraphs.
期刊介绍:
ENTCS is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication and the availability on the electronic media is appropriate. Organizers of conferences whose proceedings appear in ENTCS, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.