基于卷积神经网络的中文微博命名实体识别

L. Zhang, Huan Zhao
{"title":"基于卷积神经网络的中文微博命名实体识别","authors":"L. Zhang, Huan Zhao","doi":"10.1109/FSKD.2017.8393390","DOIUrl":null,"url":null,"abstract":"Named Entity Recognition (NER) has usually focused on traditional formal text. we consider the task of NER on microblog text. In this paper, we propose a Convolutional Neural Network for NER in Chinese microblog text. Instead of traditional machine learning needing man-made input features carefully optimized for NER task, our system learns the words feature by itself. Our network uses a sliding window of word context to predict tags. Experimental results show that our model achieved 80% accuracy on this task.","PeriodicalId":236093,"journal":{"name":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Named entity recognition for Chinese microblog with convolutional neural network\",\"authors\":\"L. Zhang, Huan Zhao\",\"doi\":\"10.1109/FSKD.2017.8393390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Named Entity Recognition (NER) has usually focused on traditional formal text. we consider the task of NER on microblog text. In this paper, we propose a Convolutional Neural Network for NER in Chinese microblog text. Instead of traditional machine learning needing man-made input features carefully optimized for NER task, our system learns the words feature by itself. Our network uses a sliding window of word context to predict tags. Experimental results show that our model achieved 80% accuracy on this task.\",\"PeriodicalId\":236093,\"journal\":{\"name\":\"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2017.8393390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2017.8393390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

命名实体识别(NER)通常关注于传统的正式文本。我们考虑了微博文本的NER任务。在本文中,我们提出了一种卷积神经网络用于中文微博文本的NER。传统的机器学习需要人为的输入特征,而不是为NER任务精心优化,我们的系统可以自己学习单词特征。我们的网络使用单词上下文的滑动窗口来预测标签。实验结果表明,我们的模型在此任务上达到了80%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Named entity recognition for Chinese microblog with convolutional neural network
Named Entity Recognition (NER) has usually focused on traditional formal text. we consider the task of NER on microblog text. In this paper, we propose a Convolutional Neural Network for NER in Chinese microblog text. Instead of traditional machine learning needing man-made input features carefully optimized for NER task, our system learns the words feature by itself. Our network uses a sliding window of word context to predict tags. Experimental results show that our model achieved 80% accuracy on this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信