{"title":"丢番图方程(n + 2)x - 2。y = z2 (N + 2)x + 2。N y = z 2","authors":"S. Tadee","doi":"10.22457/apam.v27n1a04899","DOIUrl":null,"url":null,"abstract":"In this article, we solve the Diophantine equations (n + 2)x - 2.n y = z 2 and (n + 2)x + 2.n y = z 2 , where x, y, z are non-negative integers and n is a positive integer with n ≡ 2 or n ≡ 3 (mod 4).","PeriodicalId":305863,"journal":{"name":"Annals of Pure and Applied Mathematics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Diophantine Equations (n + 2)x - 2.n y = z 2 and (n + 2)x + 2.n y = z 2\",\"authors\":\"S. Tadee\",\"doi\":\"10.22457/apam.v27n1a04899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we solve the Diophantine equations (n + 2)x - 2.n y = z 2 and (n + 2)x + 2.n y = z 2 , where x, y, z are non-negative integers and n is a positive integer with n ≡ 2 or n ≡ 3 (mod 4).\",\"PeriodicalId\":305863,\"journal\":{\"name\":\"Annals of Pure and Applied Mathematics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22457/apam.v27n1a04899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22457/apam.v27n1a04899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在这篇文章中,我们解决了二恶英的指控(n + 2)x - 2。n = z 2和(n + 2)x + 2。n y = z = 2, x, y, z在哪里non-negative integers和和n≡n是一个积极、整数2或3 n≡(mod 4)。
On the Diophantine Equations (n + 2)x - 2.n y = z 2 and (n + 2)x + 2.n y = z 2
In this article, we solve the Diophantine equations (n + 2)x - 2.n y = z 2 and (n + 2)x + 2.n y = z 2 , where x, y, z are non-negative integers and n is a positive integer with n ≡ 2 or n ≡ 3 (mod 4).