利用哨兵数据的基于对象的遥感

C. McLaughlin, A. Woodley, S. Geva, Timothy Chappell, W. Kelly, W. Boles, Lance De Vine, Holly Hutson
{"title":"利用哨兵数据的基于对象的遥感","authors":"C. McLaughlin, A. Woodley, S. Geva, Timothy Chappell, W. Kelly, W. Boles, Lance De Vine, Holly Hutson","doi":"10.1109/DICTA51227.2020.9363427","DOIUrl":null,"url":null,"abstract":"Identifying changes on the Earth's surface is one of the most fundamental aspects of Earth observation from satellite images. Historically, the predominant form of analysis has measured change at a pixel level. Here, we present a new strategy that conducts the analysis based on objects. The objects are placed inside a random forest regressor. We have tested our approach in Queensland, Australia using Sentinel data. We find that the use of object-based approach either outperforms or is comparable to alternative approaches.","PeriodicalId":348164,"journal":{"name":"2020 Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Object Based Remote Sensing Using Sentinel Data\",\"authors\":\"C. McLaughlin, A. Woodley, S. Geva, Timothy Chappell, W. Kelly, W. Boles, Lance De Vine, Holly Hutson\",\"doi\":\"10.1109/DICTA51227.2020.9363427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying changes on the Earth's surface is one of the most fundamental aspects of Earth observation from satellite images. Historically, the predominant form of analysis has measured change at a pixel level. Here, we present a new strategy that conducts the analysis based on objects. The objects are placed inside a random forest regressor. We have tested our approach in Queensland, Australia using Sentinel data. We find that the use of object-based approach either outperforms or is comparable to alternative approaches.\",\"PeriodicalId\":348164,\"journal\":{\"name\":\"2020 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA51227.2020.9363427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA51227.2020.9363427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从卫星图像中识别地球表面的变化是地球观测最基本的方面之一。从历史上看,主要的分析形式是在像素水平上测量变化。在这里,我们提出了一种基于对象进行分析的新策略。对象被放置在随机森林回归器中。我们在澳大利亚昆士兰用Sentinel的数据测试了我们的方法。我们发现,使用基于对象的方法优于或可与其他方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object Based Remote Sensing Using Sentinel Data
Identifying changes on the Earth's surface is one of the most fundamental aspects of Earth observation from satellite images. Historically, the predominant form of analysis has measured change at a pixel level. Here, we present a new strategy that conducts the analysis based on objects. The objects are placed inside a random forest regressor. We have tested our approach in Queensland, Australia using Sentinel data. We find that the use of object-based approach either outperforms or is comparable to alternative approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信