通过动态参数更新改进PPM

Christian Steinruecken, Zoubin Ghahramani, D. MacKay
{"title":"通过动态参数更新改进PPM","authors":"Christian Steinruecken, Zoubin Ghahramani, D. MacKay","doi":"10.1109/DCC.2015.77","DOIUrl":null,"url":null,"abstract":"This article makes several improvements to the classic PPM algorithm, resulting in a new algorithm with superior compression effectiveness on human text. The key differences of our algorithm to classic PPM are that (A) rather than the original escape mechanism, we use a generalised blending method with explicit hyper-parameters that control the way symbol counts are combined to form predictions, (B) different hyper-parameters are used for classes of different contexts, and (C) these hyper-parameters are updated dynamically using gradient information. The resulting algorithm (PPM-DP) compresses human text better than all currently published variants of PPM, CTW, DMC, LZ, CSE and BWT, with runtime only slightly slower than classic PPM.","PeriodicalId":313156,"journal":{"name":"2015 Data Compression Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improving PPM with Dynamic Parameter Updates\",\"authors\":\"Christian Steinruecken, Zoubin Ghahramani, D. MacKay\",\"doi\":\"10.1109/DCC.2015.77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article makes several improvements to the classic PPM algorithm, resulting in a new algorithm with superior compression effectiveness on human text. The key differences of our algorithm to classic PPM are that (A) rather than the original escape mechanism, we use a generalised blending method with explicit hyper-parameters that control the way symbol counts are combined to form predictions, (B) different hyper-parameters are used for classes of different contexts, and (C) these hyper-parameters are updated dynamically using gradient information. The resulting algorithm (PPM-DP) compresses human text better than all currently published variants of PPM, CTW, DMC, LZ, CSE and BWT, with runtime only slightly slower than classic PPM.\",\"PeriodicalId\":313156,\"journal\":{\"name\":\"2015 Data Compression Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2015.77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2015.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文对经典的PPM算法进行了改进,得到了一种对人类文本具有优异压缩效果的新算法。我们的算法与经典PPM的关键区别在于:(A)而不是原始的逃逸机制,我们使用了一种带有显式超参数的广义混合方法,该方法控制符号计数组合以形成预测的方式,(B)不同上下文的类使用不同的超参数,以及(C)这些超参数使用梯度信息动态更新。所得到的算法(PPM- dp)比目前发表的PPM、CTW、DMC、LZ、CSE和BWT的所有变体都能更好地压缩人类文本,运行时间仅比经典PPM略慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving PPM with Dynamic Parameter Updates
This article makes several improvements to the classic PPM algorithm, resulting in a new algorithm with superior compression effectiveness on human text. The key differences of our algorithm to classic PPM are that (A) rather than the original escape mechanism, we use a generalised blending method with explicit hyper-parameters that control the way symbol counts are combined to form predictions, (B) different hyper-parameters are used for classes of different contexts, and (C) these hyper-parameters are updated dynamically using gradient information. The resulting algorithm (PPM-DP) compresses human text better than all currently published variants of PPM, CTW, DMC, LZ, CSE and BWT, with runtime only slightly slower than classic PPM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信