{"title":"将Naive Bayes、K-Nearest Neighbors和Random Forest比作Twitter上对BPJS健康的情绪分类","authors":"Tamrizal A.M, Ainul Yaqin","doi":"10.22441/incomtech.v12i1.13642","DOIUrl":null,"url":null,"abstract":"Dari sejak didirikan, BPJS terus berusaha meningkatkan kualitas pelayanan termasuk menyediakan berbagai layanan pengaduan. Selain fasilitas pengaduan yang telah disediakan oleh BPJS, media sosial seperti twitter sebenarnya dapat dijadikan sebagai tempat untuk mengumpulkan informasi yang berkaitan dengan BPJS. Berbagai keluhan maupun apresiasi terhadap pelayanan BPJS sering disuarakan melalui media twitter. Pada penelitian ini, dilakukan pengujian tiga algoritma machine learning yaitu Naïve Bayes, K-Nearest Neighbors dan Random Forest, untuk mengetahui dan membandingkan tingkat akurasi dari masing-masing algoritma tersebut dalam melakukan klasifikasi terhadap sentimen masyarakat terhadap BPJS Kesehatan melalui media twitter. Pada penelitian ini dataset diperoleh dengan melakukan scrapping menggunakan twitter API. Data yang diperoleh kemudian diseleksi dan dilakukan labeling. Dari hasil seleksi dan labeling didapatkan dataset sebanyak 150 tweet yang terdiri atas 50 tweet positif, 50 tweet negative dan 50 tweet netral yang akan digunakan dalam percobaan. Pada percobaan dengan menggunakan 90% data untuk training dan 10% data untuk testing, didapatkan tingkat akurasi sebesar 80% Naive Bayes, 67% K-Nearest Neighbors dan 87% Random Forest.","PeriodicalId":123793,"journal":{"name":"InComTech : Jurnal Telekomunikasi dan Komputer","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Perbandingan Algoritma Naïve Bayes, K-Nearest Neighbors dan Random Forest untuk Klasifikasi Sentimen Terhadap BPJS Kesehatan pada Media Twitter\",\"authors\":\"Tamrizal A.M, Ainul Yaqin\",\"doi\":\"10.22441/incomtech.v12i1.13642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dari sejak didirikan, BPJS terus berusaha meningkatkan kualitas pelayanan termasuk menyediakan berbagai layanan pengaduan. Selain fasilitas pengaduan yang telah disediakan oleh BPJS, media sosial seperti twitter sebenarnya dapat dijadikan sebagai tempat untuk mengumpulkan informasi yang berkaitan dengan BPJS. Berbagai keluhan maupun apresiasi terhadap pelayanan BPJS sering disuarakan melalui media twitter. Pada penelitian ini, dilakukan pengujian tiga algoritma machine learning yaitu Naïve Bayes, K-Nearest Neighbors dan Random Forest, untuk mengetahui dan membandingkan tingkat akurasi dari masing-masing algoritma tersebut dalam melakukan klasifikasi terhadap sentimen masyarakat terhadap BPJS Kesehatan melalui media twitter. Pada penelitian ini dataset diperoleh dengan melakukan scrapping menggunakan twitter API. Data yang diperoleh kemudian diseleksi dan dilakukan labeling. Dari hasil seleksi dan labeling didapatkan dataset sebanyak 150 tweet yang terdiri atas 50 tweet positif, 50 tweet negative dan 50 tweet netral yang akan digunakan dalam percobaan. Pada percobaan dengan menggunakan 90% data untuk training dan 10% data untuk testing, didapatkan tingkat akurasi sebesar 80% Naive Bayes, 67% K-Nearest Neighbors dan 87% Random Forest.\",\"PeriodicalId\":123793,\"journal\":{\"name\":\"InComTech : Jurnal Telekomunikasi dan Komputer\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"InComTech : Jurnal Telekomunikasi dan Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22441/incomtech.v12i1.13642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"InComTech : Jurnal Telekomunikasi dan Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22441/incomtech.v12i1.13642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Perbandingan Algoritma Naïve Bayes, K-Nearest Neighbors dan Random Forest untuk Klasifikasi Sentimen Terhadap BPJS Kesehatan pada Media Twitter
Dari sejak didirikan, BPJS terus berusaha meningkatkan kualitas pelayanan termasuk menyediakan berbagai layanan pengaduan. Selain fasilitas pengaduan yang telah disediakan oleh BPJS, media sosial seperti twitter sebenarnya dapat dijadikan sebagai tempat untuk mengumpulkan informasi yang berkaitan dengan BPJS. Berbagai keluhan maupun apresiasi terhadap pelayanan BPJS sering disuarakan melalui media twitter. Pada penelitian ini, dilakukan pengujian tiga algoritma machine learning yaitu Naïve Bayes, K-Nearest Neighbors dan Random Forest, untuk mengetahui dan membandingkan tingkat akurasi dari masing-masing algoritma tersebut dalam melakukan klasifikasi terhadap sentimen masyarakat terhadap BPJS Kesehatan melalui media twitter. Pada penelitian ini dataset diperoleh dengan melakukan scrapping menggunakan twitter API. Data yang diperoleh kemudian diseleksi dan dilakukan labeling. Dari hasil seleksi dan labeling didapatkan dataset sebanyak 150 tweet yang terdiri atas 50 tweet positif, 50 tweet negative dan 50 tweet netral yang akan digunakan dalam percobaan. Pada percobaan dengan menggunakan 90% data untuk training dan 10% data untuk testing, didapatkan tingkat akurasi sebesar 80% Naive Bayes, 67% K-Nearest Neighbors dan 87% Random Forest.