在现场使用可穿戴传感器进行个性化的动态痛苦检测

J. Williamson, Kate D. Fischl, Andrew Dumas, A. Hess, T. Hughes, M. Buller
{"title":"在现场使用可穿戴传感器进行个性化的动态痛苦检测","authors":"J. Williamson, Kate D. Fischl, Andrew Dumas, A. Hess, T. Hughes, M. Buller","doi":"10.1109/BSN.2013.6575527","DOIUrl":null,"url":null,"abstract":"The early onset of musculoskeletal injury during ambulation may be detectable due to changes in gait. Body worn accelerometers provide the ability for real-time monitoring and detection of these changes, thereby providing a means for avoiding further injury. We propose algorithms for extracting magnitude and pattern asymmetry features from accelerometers attached to each foot. By registering simultaneous acceleration differences between the two feet, these features provide robustness to a variety of confounding factors, such as changes in walking speed and load carriage. By computing only summary statistics from the acceleration signals, the algorithms can be easily implemented in real-time physiological status monitoring systems. We evaluate the algorithms on a field collection consisting of 32 subjects completing a series of 5 km marches under different loading conditions. We show that changes in the magnitude and pattern asymmetry features are predictive of subject ratings of physical pain and discomfort.","PeriodicalId":138242,"journal":{"name":"2013 IEEE International Conference on Body Sensor Networks","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Individualized detection of ambulatory distress in the field using wearable sensors\",\"authors\":\"J. Williamson, Kate D. Fischl, Andrew Dumas, A. Hess, T. Hughes, M. Buller\",\"doi\":\"10.1109/BSN.2013.6575527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The early onset of musculoskeletal injury during ambulation may be detectable due to changes in gait. Body worn accelerometers provide the ability for real-time monitoring and detection of these changes, thereby providing a means for avoiding further injury. We propose algorithms for extracting magnitude and pattern asymmetry features from accelerometers attached to each foot. By registering simultaneous acceleration differences between the two feet, these features provide robustness to a variety of confounding factors, such as changes in walking speed and load carriage. By computing only summary statistics from the acceleration signals, the algorithms can be easily implemented in real-time physiological status monitoring systems. We evaluate the algorithms on a field collection consisting of 32 subjects completing a series of 5 km marches under different loading conditions. We show that changes in the magnitude and pattern asymmetry features are predictive of subject ratings of physical pain and discomfort.\",\"PeriodicalId\":138242,\"journal\":{\"name\":\"2013 IEEE International Conference on Body Sensor Networks\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2013.6575527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2013.6575527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于步态的改变,在行走过程中早期发作的肌肉骨骼损伤可以被检测到。穿戴式加速度计提供了实时监测和检测这些变化的能力,从而提供了避免进一步伤害的手段。我们提出了从附在每只脚上的加速度计中提取幅度和模式不对称特征的算法。通过记录两只脚之间的同步加速度差异,这些功能提供了对各种混杂因素的稳健性,例如步行速度和负载的变化。通过计算加速度信号的汇总统计,该算法可以很容易地在实时生理状态监测系统中实现。我们在一个由32名受试者组成的现场集合上评估了算法,这些受试者在不同的负载条件下完成了一系列5公里的行军。我们表明,在大小和模式不对称特征的变化是预测身体疼痛和不适的受试者评级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Individualized detection of ambulatory distress in the field using wearable sensors
The early onset of musculoskeletal injury during ambulation may be detectable due to changes in gait. Body worn accelerometers provide the ability for real-time monitoring and detection of these changes, thereby providing a means for avoiding further injury. We propose algorithms for extracting magnitude and pattern asymmetry features from accelerometers attached to each foot. By registering simultaneous acceleration differences between the two feet, these features provide robustness to a variety of confounding factors, such as changes in walking speed and load carriage. By computing only summary statistics from the acceleration signals, the algorithms can be easily implemented in real-time physiological status monitoring systems. We evaluate the algorithms on a field collection consisting of 32 subjects completing a series of 5 km marches under different loading conditions. We show that changes in the magnitude and pattern asymmetry features are predictive of subject ratings of physical pain and discomfort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信