结合陈述性知识和强化学习的生物启发认知智能体模型

A. Tan, G. Ng
{"title":"结合陈述性知识和强化学习的生物启发认知智能体模型","authors":"A. Tan, G. Ng","doi":"10.1109/WI-IAT.2010.210","DOIUrl":null,"url":null,"abstract":"The paper proposes a biologically-inspired cognitive agent model, known as FALCON-X, based on an integration of the Adaptive Control of Thought (ACT-R) architecture and a class of self-organizing neural networks called fusion Adaptive Resonance Theory (fusion ART). By replacing the production system of ACT-R by a fusion ART model, FALCON-X integrates high-level deliberative cognitive behaviors and real-time learning abilities, based on biologically plausible neural pathways. We illustrate how FALCON-X, consisting of a core inference area interacting with the associated intentional, declarative, perceptual, motor and critic memory modules, can be used to build virtual robots for battles in a simulated RoboCode domain. The performance of FALCON-X demonstrates the efficacy of the hybrid approach.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Biologically-Inspired Cognitive Agent Model Integrating Declarative Knowledge and Reinforcement Learning\",\"authors\":\"A. Tan, G. Ng\",\"doi\":\"10.1109/WI-IAT.2010.210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a biologically-inspired cognitive agent model, known as FALCON-X, based on an integration of the Adaptive Control of Thought (ACT-R) architecture and a class of self-organizing neural networks called fusion Adaptive Resonance Theory (fusion ART). By replacing the production system of ACT-R by a fusion ART model, FALCON-X integrates high-level deliberative cognitive behaviors and real-time learning abilities, based on biologically plausible neural pathways. We illustrate how FALCON-X, consisting of a core inference area interacting with the associated intentional, declarative, perceptual, motor and critic memory modules, can be used to build virtual robots for battles in a simulated RoboCode domain. The performance of FALCON-X demonstrates the efficacy of the hybrid approach.\",\"PeriodicalId\":340211,\"journal\":{\"name\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种受生物学启发的认知代理模型,称为FALCON-X,该模型基于思想的自适应控制(ACT-R)架构和一类称为融合自适应共振理论(fusion ART)的自组织神经网络的集成。通过融合ART模型取代ACT-R的产生系统,FALCON-X基于生物学上合理的神经通路,整合了高水平的审慎认知行为和实时学习能力。我们说明了FALCON-X如何组成一个核心推理区域,与相关的意图、声明、感知、运动和批评记忆模块相互作用,可用于在模拟RoboCode领域中构建虚拟机器人。猎鹰- x的性能证明了混合方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Biologically-Inspired Cognitive Agent Model Integrating Declarative Knowledge and Reinforcement Learning
The paper proposes a biologically-inspired cognitive agent model, known as FALCON-X, based on an integration of the Adaptive Control of Thought (ACT-R) architecture and a class of self-organizing neural networks called fusion Adaptive Resonance Theory (fusion ART). By replacing the production system of ACT-R by a fusion ART model, FALCON-X integrates high-level deliberative cognitive behaviors and real-time learning abilities, based on biologically plausible neural pathways. We illustrate how FALCON-X, consisting of a core inference area interacting with the associated intentional, declarative, perceptual, motor and critic memory modules, can be used to build virtual robots for battles in a simulated RoboCode domain. The performance of FALCON-X demonstrates the efficacy of the hybrid approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信