基于进化方法的语音增强算法自适应调谐

Ryan LeBlanc, S. Selouani
{"title":"基于进化方法的语音增强算法自适应调谐","authors":"Ryan LeBlanc, S. Selouani","doi":"10.1109/CogMI48466.2019.00012","DOIUrl":null,"url":null,"abstract":"In this paper a novel approach to speech enhancement algorithm tuning is presented. A self-adaptive tuning method was developed using an evolutionary optimization algorithm. Through this new approach, an improvement on the multiband spectral subtraction method was obtained by using a genetic algorithm to adaptively tune the algorithm's parameters for the speech being processed. Experimental tests using objective quality and intelligibility measures showed that the proposed artificial intelligence-based method offers better noise reduction with less signal distortion when compared to existing speech enhancement methods.","PeriodicalId":116160,"journal":{"name":"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)","volume":"313 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Self-Adaptive Tuning for Speech Enhancement Algorithm Based on Evolutionary Approach\",\"authors\":\"Ryan LeBlanc, S. Selouani\",\"doi\":\"10.1109/CogMI48466.2019.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a novel approach to speech enhancement algorithm tuning is presented. A self-adaptive tuning method was developed using an evolutionary optimization algorithm. Through this new approach, an improvement on the multiband spectral subtraction method was obtained by using a genetic algorithm to adaptively tune the algorithm's parameters for the speech being processed. Experimental tests using objective quality and intelligibility measures showed that the proposed artificial intelligence-based method offers better noise reduction with less signal distortion when compared to existing speech enhancement methods.\",\"PeriodicalId\":116160,\"journal\":{\"name\":\"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)\",\"volume\":\"313 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CogMI48466.2019.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogMI48466.2019.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的语音增强算法调优方法。提出了一种基于进化优化算法的自适应调谐方法。该方法对多波段谱减法进行了改进,采用遗传算法对被处理语音自适应调整算法参数。使用客观质量和可理解度度量的实验测试表明,与现有的语音增强方法相比,基于人工智能的方法具有更好的降噪效果和更小的信号失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Adaptive Tuning for Speech Enhancement Algorithm Based on Evolutionary Approach
In this paper a novel approach to speech enhancement algorithm tuning is presented. A self-adaptive tuning method was developed using an evolutionary optimization algorithm. Through this new approach, an improvement on the multiband spectral subtraction method was obtained by using a genetic algorithm to adaptively tune the algorithm's parameters for the speech being processed. Experimental tests using objective quality and intelligibility measures showed that the proposed artificial intelligence-based method offers better noise reduction with less signal distortion when compared to existing speech enhancement methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信