乳腺癌检测的级联推广

K. A. Nugroho, N. A. Setiawan, T. B. Adji
{"title":"乳腺癌检测的级联推广","authors":"K. A. Nugroho, N. A. Setiawan, T. B. Adji","doi":"10.1109/ICITEED.2013.6676211","DOIUrl":null,"url":null,"abstract":"Mammography is known as the preferred method for breast cancer diagnosis. Researchers have proposed machine learning based methods to improve the detection of breast cancer using mammography. In this study, cascade generalization is proposed for breast cancer detection. Four Bayesian Network based methods, SVM, and C4.5 are evaluated in loose coupled cascade classifier. The Bayesian based methods are evaluated in both base level and meta level. The evaluation results show the superiority of the proposed cascade strategy compared to Bagging and single classifier approach. Naive Bayes with SMO cascade demonstrated the best result in terms of ROC area under curve of 0.903. Bayesian Network using Tabu search with SMO cascade demonstrated the best accuracy of 83.689%.","PeriodicalId":204082,"journal":{"name":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Cascade generalization for breast cancer detection\",\"authors\":\"K. A. Nugroho, N. A. Setiawan, T. B. Adji\",\"doi\":\"10.1109/ICITEED.2013.6676211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mammography is known as the preferred method for breast cancer diagnosis. Researchers have proposed machine learning based methods to improve the detection of breast cancer using mammography. In this study, cascade generalization is proposed for breast cancer detection. Four Bayesian Network based methods, SVM, and C4.5 are evaluated in loose coupled cascade classifier. The Bayesian based methods are evaluated in both base level and meta level. The evaluation results show the superiority of the proposed cascade strategy compared to Bagging and single classifier approach. Naive Bayes with SMO cascade demonstrated the best result in terms of ROC area under curve of 0.903. Bayesian Network using Tabu search with SMO cascade demonstrated the best accuracy of 83.689%.\",\"PeriodicalId\":204082,\"journal\":{\"name\":\"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITEED.2013.6676211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2013.6676211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

乳房x光检查被认为是乳腺癌诊断的首选方法。研究人员提出了基于机器学习的方法来改进乳房x光检查对乳腺癌的检测。本研究提出了乳腺癌检测的级联推广方法。在松散耦合级联分类器中对四种基于贝叶斯网络的方法、SVM和C4.5进行了评价。基于贝叶斯的方法分别在基级和元级进行了评估。评价结果表明,与Bagging和单分类器方法相比,所提出的级联策略具有优越性。SMO级联朴素贝叶斯的ROC曲线下面积为0.903,效果最好。采用SMO级联禁忌搜索的贝叶斯网络准确率最高,达到83.689%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cascade generalization for breast cancer detection
Mammography is known as the preferred method for breast cancer diagnosis. Researchers have proposed machine learning based methods to improve the detection of breast cancer using mammography. In this study, cascade generalization is proposed for breast cancer detection. Four Bayesian Network based methods, SVM, and C4.5 are evaluated in loose coupled cascade classifier. The Bayesian based methods are evaluated in both base level and meta level. The evaluation results show the superiority of the proposed cascade strategy compared to Bagging and single classifier approach. Naive Bayes with SMO cascade demonstrated the best result in terms of ROC area under curve of 0.903. Bayesian Network using Tabu search with SMO cascade demonstrated the best accuracy of 83.689%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信