基于机器学习的智能社交媒体挖掘无序通信检测

S. Sajithabanu, A. Ponmalar, R. Dhanalakshmi, R. Lakshmi, M. Vivitha, Harish Anantha Krishnan R
{"title":"基于机器学习的智能社交媒体挖掘无序通信检测","authors":"S. Sajithabanu, A. Ponmalar, R. Dhanalakshmi, R. Lakshmi, M. Vivitha, Harish Anantha Krishnan R","doi":"10.1109/ICCPC55978.2022.10072247","DOIUrl":null,"url":null,"abstract":"Social Media are gaining momentum in this digital era. Data is being shared on social media on random intervals across the world. The Population of the persons in social media has overcome the population of certain countries of the world, which implicates the growth of the social media at this juncture. Any news or posts in the social media can be so trending that the post get viral within fraction of time, thus attracting the attention of the other persons. Whilst this can be taken in the positive account, precautions have to be taken to avoid the social media being misused. Any news or posts related to hatred, spread of misappropriate content relating to religion, sex, countries or borders, or any other news that can harm or spread hatred towards any community or people has to be stopped, else it may create havoc or damages of property or a brand that can affect the lives and the reputation of many. This paper puts out a novel approach to identify those mental disorders communication from the social media accounts by using machine learning approach.","PeriodicalId":367848,"journal":{"name":"2022 International Conference on Computer, Power and Communications (ICCPC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Based Smart Social Media Mining for Disorder Communication Detection\",\"authors\":\"S. Sajithabanu, A. Ponmalar, R. Dhanalakshmi, R. Lakshmi, M. Vivitha, Harish Anantha Krishnan R\",\"doi\":\"10.1109/ICCPC55978.2022.10072247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social Media are gaining momentum in this digital era. Data is being shared on social media on random intervals across the world. The Population of the persons in social media has overcome the population of certain countries of the world, which implicates the growth of the social media at this juncture. Any news or posts in the social media can be so trending that the post get viral within fraction of time, thus attracting the attention of the other persons. Whilst this can be taken in the positive account, precautions have to be taken to avoid the social media being misused. Any news or posts related to hatred, spread of misappropriate content relating to religion, sex, countries or borders, or any other news that can harm or spread hatred towards any community or people has to be stopped, else it may create havoc or damages of property or a brand that can affect the lives and the reputation of many. This paper puts out a novel approach to identify those mental disorders communication from the social media accounts by using machine learning approach.\",\"PeriodicalId\":367848,\"journal\":{\"name\":\"2022 International Conference on Computer, Power and Communications (ICCPC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Computer, Power and Communications (ICCPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPC55978.2022.10072247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer, Power and Communications (ICCPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPC55978.2022.10072247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这个数字时代,社交媒体正在获得动力。世界各地的社交媒体正以随机间隔分享数据。社交媒体的人口已经超过了世界上某些国家的人口,这意味着社交媒体在这个关键时刻的增长。社交媒体上的任何新闻或帖子都可以在很短的时间内传播开来,从而吸引其他人的注意。虽然这可以从积极的角度来看,但必须采取预防措施以避免社交媒体被滥用。任何与仇恨有关的新闻或帖子,与宗教,性别,国家或边界有关的不当内容的传播,或任何其他可能伤害或传播对任何社区或人的仇恨的新闻都必须停止,否则它可能会造成严重破坏或财产或品牌损害,从而影响许多人的生活和声誉。本文提出了一种利用机器学习方法从社交媒体账户中识别精神障碍交流的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Based Smart Social Media Mining for Disorder Communication Detection
Social Media are gaining momentum in this digital era. Data is being shared on social media on random intervals across the world. The Population of the persons in social media has overcome the population of certain countries of the world, which implicates the growth of the social media at this juncture. Any news or posts in the social media can be so trending that the post get viral within fraction of time, thus attracting the attention of the other persons. Whilst this can be taken in the positive account, precautions have to be taken to avoid the social media being misused. Any news or posts related to hatred, spread of misappropriate content relating to religion, sex, countries or borders, or any other news that can harm or spread hatred towards any community or people has to be stopped, else it may create havoc or damages of property or a brand that can affect the lives and the reputation of many. This paper puts out a novel approach to identify those mental disorders communication from the social media accounts by using machine learning approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信