为移动服务应用挖掘基于上下文的用户偏好

E. Jembere, M. Adigun, S. S. Xulu
{"title":"为移动服务应用挖掘基于上下文的用户偏好","authors":"E. Jembere, M. Adigun, S. S. Xulu","doi":"10.1109/WI.2007.141","DOIUrl":null,"url":null,"abstract":"Human Computer Interaction (HCI) challenges in mobile computing can be addressed by tailoring access and use of mobile services to user preferences. Our investigation of existent approaches to personalisation in context-aware computing found that user preferences are assumed to be static across different context descriptions, whilst in reality some user preferences are transient and vary with the change in context. Furthermore, existent preference models do not give an intuitive interpretation of a preference and lack user expressiveness. To tackle these issues, this paper presents a user preference model and mining framework for a context-aware m-services environment based on an intuitive quantitative preference measure and a strict partial order preference representation. Experimental evaluation of the user preference mining framework in a simulated m-Commerce environment showed that it is very promising. The preference mining algorithms were found to scale well with increases in the volumes of data.","PeriodicalId":192501,"journal":{"name":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Mining Context-based User Preferences for m-Services Applications\",\"authors\":\"E. Jembere, M. Adigun, S. S. Xulu\",\"doi\":\"10.1109/WI.2007.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human Computer Interaction (HCI) challenges in mobile computing can be addressed by tailoring access and use of mobile services to user preferences. Our investigation of existent approaches to personalisation in context-aware computing found that user preferences are assumed to be static across different context descriptions, whilst in reality some user preferences are transient and vary with the change in context. Furthermore, existent preference models do not give an intuitive interpretation of a preference and lack user expressiveness. To tackle these issues, this paper presents a user preference model and mining framework for a context-aware m-services environment based on an intuitive quantitative preference measure and a strict partial order preference representation. Experimental evaluation of the user preference mining framework in a simulated m-Commerce environment showed that it is very promising. The preference mining algorithms were found to scale well with increases in the volumes of data.\",\"PeriodicalId\":192501,\"journal\":{\"name\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2007.141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2007.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

移动计算中的人机交互(HCI)挑战可以通过根据用户偏好定制移动服务的访问和使用来解决。我们对上下文感知计算中现有的个性化方法的调查发现,用户偏好在不同的上下文描述中被认为是静态的,而实际上一些用户偏好是短暂的,并且随着上下文的变化而变化。此外,现有的偏好模型不能直观地解释偏好,缺乏用户表达能力。为了解决这些问题,本文提出了一个基于直观的定量偏好度量和严格的偏序偏好表示的上下文感知m-服务环境的用户偏好模型和挖掘框架。在模拟移动商务环境中对用户偏好挖掘框架的实验评估表明,该框架是非常有前途的。发现偏好挖掘算法随着数据量的增加而扩展得很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Context-based User Preferences for m-Services Applications
Human Computer Interaction (HCI) challenges in mobile computing can be addressed by tailoring access and use of mobile services to user preferences. Our investigation of existent approaches to personalisation in context-aware computing found that user preferences are assumed to be static across different context descriptions, whilst in reality some user preferences are transient and vary with the change in context. Furthermore, existent preference models do not give an intuitive interpretation of a preference and lack user expressiveness. To tackle these issues, this paper presents a user preference model and mining framework for a context-aware m-services environment based on an intuitive quantitative preference measure and a strict partial order preference representation. Experimental evaluation of the user preference mining framework in a simulated m-Commerce environment showed that it is very promising. The preference mining algorithms were found to scale well with increases in the volumes of data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信