使用深度迁移学习的智能逆变器以设备为中心的固件恶意软件检测

Syed. R. B. Alvee, Bohyun Ahn, Seerin Ahmad, Kyoung-Tak Kim, Taesic Kim, Jianwu Zeng
{"title":"使用深度迁移学习的智能逆变器以设备为中心的固件恶意软件检测","authors":"Syed. R. B. Alvee, Bohyun Ahn, Seerin Ahmad, Kyoung-Tak Kim, Taesic Kim, Jianwu Zeng","doi":"10.1109/DMC55175.2022.9906538","DOIUrl":null,"url":null,"abstract":"Since future power grids are inverter-dominant grids and inverters are getting smarter by incorporating remote access and seamless firmware update, it is anticipated that malware attackers will directly target smart inverters. However, malware threats targeting smart inverters have been less studied yet. This paper explores potential malware attacks targeting smart inverters and proposes a deep transfer-learning (DTL)-based malware detection framework for smart inverters. The proposed DTL method can significantly reduce development time and efforts for an artificial intelligence-based malware detection algorithm while improving detection accuracy. The experimental result shows that the proposed method achieves 98% of firmware malware detection accuracy. This approach will be transformative to other smart grid devices enabling seamless firmware update.","PeriodicalId":245908,"journal":{"name":"2022 IEEE Design Methodologies Conference (DMC)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Device-Centric Firmware Malware Detection for Smart Inverters using Deep Transfer Learning\",\"authors\":\"Syed. R. B. Alvee, Bohyun Ahn, Seerin Ahmad, Kyoung-Tak Kim, Taesic Kim, Jianwu Zeng\",\"doi\":\"10.1109/DMC55175.2022.9906538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since future power grids are inverter-dominant grids and inverters are getting smarter by incorporating remote access and seamless firmware update, it is anticipated that malware attackers will directly target smart inverters. However, malware threats targeting smart inverters have been less studied yet. This paper explores potential malware attacks targeting smart inverters and proposes a deep transfer-learning (DTL)-based malware detection framework for smart inverters. The proposed DTL method can significantly reduce development time and efforts for an artificial intelligence-based malware detection algorithm while improving detection accuracy. The experimental result shows that the proposed method achieves 98% of firmware malware detection accuracy. This approach will be transformative to other smart grid devices enabling seamless firmware update.\",\"PeriodicalId\":245908,\"journal\":{\"name\":\"2022 IEEE Design Methodologies Conference (DMC)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Design Methodologies Conference (DMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMC55175.2022.9906538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Design Methodologies Conference (DMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMC55175.2022.9906538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于未来的电网是逆变器主导的电网,逆变器通过整合远程访问和无缝固件更新而变得更加智能,预计恶意软件攻击者将直接针对智能逆变器。然而,针对智能逆变器的恶意软件威胁研究较少。本文探讨了针对智能逆变器的潜在恶意软件攻击,提出了一种基于深度迁移学习(DTL)的智能逆变器恶意软件检测框架。提出的DTL方法可以显著减少基于人工智能的恶意软件检测算法的开发时间和工作量,同时提高检测精度。实验结果表明,该方法对固件恶意软件的检测准确率达到98%。这种方法将转变为其他智能电网设备,实现无缝固件更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Device-Centric Firmware Malware Detection for Smart Inverters using Deep Transfer Learning
Since future power grids are inverter-dominant grids and inverters are getting smarter by incorporating remote access and seamless firmware update, it is anticipated that malware attackers will directly target smart inverters. However, malware threats targeting smart inverters have been less studied yet. This paper explores potential malware attacks targeting smart inverters and proposes a deep transfer-learning (DTL)-based malware detection framework for smart inverters. The proposed DTL method can significantly reduce development time and efforts for an artificial intelligence-based malware detection algorithm while improving detection accuracy. The experimental result shows that the proposed method achieves 98% of firmware malware detection accuracy. This approach will be transformative to other smart grid devices enabling seamless firmware update.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信