{"title":"一种监测实际TPTL规格的有效算法","authors":"Adel Dokhanchi, Bardh Hoxha, Cumhur Erkan Tuncali, Georgios Fainekos","doi":"10.1109/MEMCOD.2016.7797763","DOIUrl":null,"url":null,"abstract":"We provide a dynamic programming algorithm for the monitoring of a fragment of Timed Propositional Temporal Logic (TPTL) specifications. This fragment of TPTL, which is more expressive than Metric Temporal Logic, is characterized by independent time variables which enable the elicitation of complex real-time requirements. For this fragment, we provide an efficient polynomial time algorithm for off-line monitoring of finite traces. Finally, we provide experimental results on a prototype implementation of our tool in order to demonstrate the feasibility of using our tool in practical applications.","PeriodicalId":180873,"journal":{"name":"2016 ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An efficient algorithm for monitoring practical TPTL specifications\",\"authors\":\"Adel Dokhanchi, Bardh Hoxha, Cumhur Erkan Tuncali, Georgios Fainekos\",\"doi\":\"10.1109/MEMCOD.2016.7797763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a dynamic programming algorithm for the monitoring of a fragment of Timed Propositional Temporal Logic (TPTL) specifications. This fragment of TPTL, which is more expressive than Metric Temporal Logic, is characterized by independent time variables which enable the elicitation of complex real-time requirements. For this fragment, we provide an efficient polynomial time algorithm for off-line monitoring of finite traces. Finally, we provide experimental results on a prototype implementation of our tool in order to demonstrate the feasibility of using our tool in practical applications.\",\"PeriodicalId\":180873,\"journal\":{\"name\":\"2016 ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMCOD.2016.7797763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMCOD.2016.7797763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient algorithm for monitoring practical TPTL specifications
We provide a dynamic programming algorithm for the monitoring of a fragment of Timed Propositional Temporal Logic (TPTL) specifications. This fragment of TPTL, which is more expressive than Metric Temporal Logic, is characterized by independent time variables which enable the elicitation of complex real-time requirements. For this fragment, we provide an efficient polynomial time algorithm for off-line monitoring of finite traces. Finally, we provide experimental results on a prototype implementation of our tool in order to demonstrate the feasibility of using our tool in practical applications.