度量空间的ramsey型定理及其在度量任务系统及相关问题中的应用

Y. Bartal, B. Bollobás, M. Mendel
{"title":"度量空间的ramsey型定理及其在度量任务系统及相关问题中的应用","authors":"Y. Bartal, B. Bollobás, M. Mendel","doi":"10.1109/SFCS.2001.959914","DOIUrl":null,"url":null,"abstract":"The paper gives a nearly logarithmic lower bound on the randomized competitive ratio for a Metrical Task Systems model (A. Borodin et al., 1992). This implies a similar lower bound for the extensively studied K-server problem. Our proof is based on proving a Ramsey-type theorem for metric spaces. In particular, we prove that in every metric space there exists a large subspace which is approximately a \"hierarchically well-separated tree\" (HST) (Y. Bartal, 1996). This theorem may be of independent interest.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"A Ramsey-type theorem for metric spaces and its applications for metrical task systems and related problems\",\"authors\":\"Y. Bartal, B. Bollobás, M. Mendel\",\"doi\":\"10.1109/SFCS.2001.959914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper gives a nearly logarithmic lower bound on the randomized competitive ratio for a Metrical Task Systems model (A. Borodin et al., 1992). This implies a similar lower bound for the extensively studied K-server problem. Our proof is based on proving a Ramsey-type theorem for metric spaces. In particular, we prove that in every metric space there exists a large subspace which is approximately a \\\"hierarchically well-separated tree\\\" (HST) (Y. Bartal, 1996). This theorem may be of independent interest.\",\"PeriodicalId\":378126,\"journal\":{\"name\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.2001.959914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

本文给出了一个测量任务系统模型的随机竞争比的近乎对数的下界(a . Borodin et al., 1992)。这意味着广泛研究的K-server问题也有类似的下界。我们的证明是基于对度量空间的ramsey型定理的证明。特别地,我们证明了在每个度量空间中存在一个大的子空间,它近似于一个“层次上良好分离的树”(Y. Bartal, 1996)。这个定理可能有独立的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Ramsey-type theorem for metric spaces and its applications for metrical task systems and related problems
The paper gives a nearly logarithmic lower bound on the randomized competitive ratio for a Metrical Task Systems model (A. Borodin et al., 1992). This implies a similar lower bound for the extensively studied K-server problem. Our proof is based on proving a Ramsey-type theorem for metric spaces. In particular, we prove that in every metric space there exists a large subspace which is approximately a "hierarchically well-separated tree" (HST) (Y. Bartal, 1996). This theorem may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信