利用目标检测器进行图像分类

Thibaut Durand, Nicolas Thome, M. Cord, S. Avila
{"title":"利用目标检测器进行图像分类","authors":"Thibaut Durand, Nicolas Thome, M. Cord, S. Avila","doi":"10.1109/ICIP.2013.6738894","DOIUrl":null,"url":null,"abstract":"Image categorization is one of the most competitive topic in computer vision and image processing. In this paper, we propose to use trained object and region detectors to represent the visual content of each image. Compared to similar methods found in the literature, our method encompasses two main areas of novelty: introducing a new spatial pooling formalism and designing a late fusion strategy for combining our representation with state-of-the art methods based on low-level descriptors, e.g. Fisher Vectors and BossaNova. Our experiments carried out in the challenging PASCAL VOC 2007 dataset reveal outstanding performances. When combined with low-level representations, we reach more than 67.6% in MAP, outperforming recently reported results in this dataset with a large margin.","PeriodicalId":388385,"journal":{"name":"2013 IEEE International Conference on Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Image classification using object detectors\",\"authors\":\"Thibaut Durand, Nicolas Thome, M. Cord, S. Avila\",\"doi\":\"10.1109/ICIP.2013.6738894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image categorization is one of the most competitive topic in computer vision and image processing. In this paper, we propose to use trained object and region detectors to represent the visual content of each image. Compared to similar methods found in the literature, our method encompasses two main areas of novelty: introducing a new spatial pooling formalism and designing a late fusion strategy for combining our representation with state-of-the art methods based on low-level descriptors, e.g. Fisher Vectors and BossaNova. Our experiments carried out in the challenging PASCAL VOC 2007 dataset reveal outstanding performances. When combined with low-level representations, we reach more than 67.6% in MAP, outperforming recently reported results in this dataset with a large margin.\",\"PeriodicalId\":388385,\"journal\":{\"name\":\"2013 IEEE International Conference on Image Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2013.6738894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2013.6738894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

图像分类是计算机视觉和图像处理领域最具竞争力的课题之一。在本文中,我们建议使用训练好的对象和区域检测器来表示每个图像的视觉内容。与文献中发现的类似方法相比,我们的方法包含两个主要的新颖领域:引入新的空间池形式主义,并设计一种晚期融合策略,将我们的表示与基于低级描述符的最先进方法相结合,例如Fisher Vectors和BossaNova。我们在具有挑战性的PASCAL VOC 2007数据集中进行的实验显示了出色的性能。当与低级表示相结合时,我们在MAP中达到了67.6%以上,大大优于该数据集中最近报道的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image classification using object detectors
Image categorization is one of the most competitive topic in computer vision and image processing. In this paper, we propose to use trained object and region detectors to represent the visual content of each image. Compared to similar methods found in the literature, our method encompasses two main areas of novelty: introducing a new spatial pooling formalism and designing a late fusion strategy for combining our representation with state-of-the art methods based on low-level descriptors, e.g. Fisher Vectors and BossaNova. Our experiments carried out in the challenging PASCAL VOC 2007 dataset reveal outstanding performances. When combined with low-level representations, we reach more than 67.6% in MAP, outperforming recently reported results in this dataset with a large margin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信