论不可分割物品的公平划分

Yun Kuen Cheung, Bhaskar Chaudhuri, J. Garg, Naveen Garg, M. Hoefer, K. Mehlhorn
{"title":"论不可分割物品的公平划分","authors":"Yun Kuen Cheung, Bhaskar Chaudhuri, J. Garg, Naveen Garg, M. Hoefer, K. Mehlhorn","doi":"10.4230/LIPIcs.FSTTCS.2018.25","DOIUrl":null,"url":null,"abstract":"We consider the task of assigning indivisible goods to a set of agents in a fair manner. Our notion of fairness is Nash social welfare, i.e., the goal is to maximize the geometric mean of the utilities of the agents. Each good comes in multiple items or copies, and the utility of an agent diminishes as it receives more items of the same good. The utility of a bundle of items for an agent is the sum of the utilities of the items in the bundle. Each agent has a utility cap beyond which he does not value additional items. We give a polynomial time approximation algorithm that maximizes Nash social welfare up to a factor of e^{1/{e}} ~~ 1.445. The computed allocation is Pareto-optimal and approximates envy-freeness up to one item up to a factor of 2 + epsilon.","PeriodicalId":175000,"journal":{"name":"Foundations of Software Technology and Theoretical Computer Science","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"On Fair Division for Indivisible Items\",\"authors\":\"Yun Kuen Cheung, Bhaskar Chaudhuri, J. Garg, Naveen Garg, M. Hoefer, K. Mehlhorn\",\"doi\":\"10.4230/LIPIcs.FSTTCS.2018.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the task of assigning indivisible goods to a set of agents in a fair manner. Our notion of fairness is Nash social welfare, i.e., the goal is to maximize the geometric mean of the utilities of the agents. Each good comes in multiple items or copies, and the utility of an agent diminishes as it receives more items of the same good. The utility of a bundle of items for an agent is the sum of the utilities of the items in the bundle. Each agent has a utility cap beyond which he does not value additional items. We give a polynomial time approximation algorithm that maximizes Nash social welfare up to a factor of e^{1/{e}} ~~ 1.445. The computed allocation is Pareto-optimal and approximates envy-freeness up to one item up to a factor of 2 + epsilon.\",\"PeriodicalId\":175000,\"journal\":{\"name\":\"Foundations of Software Technology and Theoretical Computer Science\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Software Technology and Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FSTTCS.2018.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Software Technology and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSTTCS.2018.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

我们考虑的任务是以公平的方式将不可分割的货物分配给一组代理商。我们的公平概念是纳什社会福利,即目标是最大化代理效用的几何平均值。每种商品都有多种商品或副本,代理的效用会随着同一商品的商品数量增加而减少。对于一个代理来说,一束物品的效用是该束物品效用的总和。每个代理人都有一个效用上限,超过了这个上限,他就不重视额外的物品。我们给出了一个多项式时间近似算法,该算法将纳什社会福利最大化到e^{1/{e}} ~~ 1.445。计算的分配是帕累托最优的,并且将嫉妒自由逼近到一个项目,达到2 + epsilon的系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Fair Division for Indivisible Items
We consider the task of assigning indivisible goods to a set of agents in a fair manner. Our notion of fairness is Nash social welfare, i.e., the goal is to maximize the geometric mean of the utilities of the agents. Each good comes in multiple items or copies, and the utility of an agent diminishes as it receives more items of the same good. The utility of a bundle of items for an agent is the sum of the utilities of the items in the bundle. Each agent has a utility cap beyond which he does not value additional items. We give a polynomial time approximation algorithm that maximizes Nash social welfare up to a factor of e^{1/{e}} ~~ 1.445. The computed allocation is Pareto-optimal and approximates envy-freeness up to one item up to a factor of 2 + epsilon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信