{"title":"p络合物斜线同调对称群的不可约表示","authors":"Aaron Chan, William Wong","doi":"10.5802/ALCO.153","DOIUrl":null,"url":null,"abstract":"In the 40s, Mayer introduced a construction of (simplicial) $p$-complex by using the unsigned boundary map and taking coefficients of chains modulo $p$. We look at such a $p$-complex associated to an $(n-1)$-simplex; in which case, this is also a $p$-complex of representations of the symmetric group of rank $n$ - specifically, of permutation modules associated to two-row compositions. In this article, we calculate the so-called slash homology - a homology theory introduced by Khovanov and Qi - of such a $p$-complex. We show that every non-trivial slash homology group appears as an irreducible representation associated two-row partitions, and how this calculation leads to a basis of these irreduicble representations given by the so-called $p$-standard tableaux.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irreducible representations of the symmetric groups from slash homologies of p-complexes\",\"authors\":\"Aaron Chan, William Wong\",\"doi\":\"10.5802/ALCO.153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the 40s, Mayer introduced a construction of (simplicial) $p$-complex by using the unsigned boundary map and taking coefficients of chains modulo $p$. We look at such a $p$-complex associated to an $(n-1)$-simplex; in which case, this is also a $p$-complex of representations of the symmetric group of rank $n$ - specifically, of permutation modules associated to two-row compositions. In this article, we calculate the so-called slash homology - a homology theory introduced by Khovanov and Qi - of such a $p$-complex. We show that every non-trivial slash homology group appears as an irreducible representation associated two-row partitions, and how this calculation leads to a basis of these irreduicble representations given by the so-called $p$-standard tableaux.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ALCO.153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ALCO.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Irreducible representations of the symmetric groups from slash homologies of p-complexes
In the 40s, Mayer introduced a construction of (simplicial) $p$-complex by using the unsigned boundary map and taking coefficients of chains modulo $p$. We look at such a $p$-complex associated to an $(n-1)$-simplex; in which case, this is also a $p$-complex of representations of the symmetric group of rank $n$ - specifically, of permutation modules associated to two-row compositions. In this article, we calculate the so-called slash homology - a homology theory introduced by Khovanov and Qi - of such a $p$-complex. We show that every non-trivial slash homology group appears as an irreducible representation associated two-row partitions, and how this calculation leads to a basis of these irreduicble representations given by the so-called $p$-standard tableaux.