论t量词和s量词

H. Thiele
{"title":"论t量词和s量词","authors":"H. Thiele","doi":"10.1109/ISMVL.1994.302192","DOIUrl":null,"url":null,"abstract":"We show how the \"classical\" theory of T-norms and S-norms of fuzzy logic can be generalized to a theory of T-quantifiers and S-quantifiers, respectively. The key idea leading to this generalization is the fact that the (infinite) iteration of the two-valued conjunction and disjunction gives the two-valued all-quantifier and ex-quantifier, respectively. In the framework of fuzzy logic the same holds for min with respect to Inf and for max with respect to Sup. As a T-norm (S-norm) is commutative and associative, we can construct an all-/spl tau/-quantifier (an ex-/spl sigma/-quantifier) from a given T-norm /spl tau/ (S-norm /spl sigma/). These quantifiers are characterized by axioms (T-quantifiers and S-quantifiers). Furthermore we show that the generating procedure is \"complete\" with respect to arbitrary T-quantifiers (S-quantifiers) and uniquely reversible.<<ETX>>","PeriodicalId":137138,"journal":{"name":"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"On T-quantifiers and S-quantifiers\",\"authors\":\"H. Thiele\",\"doi\":\"10.1109/ISMVL.1994.302192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how the \\\"classical\\\" theory of T-norms and S-norms of fuzzy logic can be generalized to a theory of T-quantifiers and S-quantifiers, respectively. The key idea leading to this generalization is the fact that the (infinite) iteration of the two-valued conjunction and disjunction gives the two-valued all-quantifier and ex-quantifier, respectively. In the framework of fuzzy logic the same holds for min with respect to Inf and for max with respect to Sup. As a T-norm (S-norm) is commutative and associative, we can construct an all-/spl tau/-quantifier (an ex-/spl sigma/-quantifier) from a given T-norm /spl tau/ (S-norm /spl sigma/). These quantifiers are characterized by axioms (T-quantifiers and S-quantifiers). Furthermore we show that the generating procedure is \\\"complete\\\" with respect to arbitrary T-quantifiers (S-quantifiers) and uniquely reversible.<<ETX>>\",\"PeriodicalId\":137138,\"journal\":{\"name\":\"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1994.302192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1994.302192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

我们展示了如何将模糊逻辑的t -范数和s -范数的“经典”理论分别推广到t -量词和s -量词的理论。导致这一推广的关键思想是二值连接和析取的(无限)迭代分别给出了二值全量词和前量词。在模糊逻辑的框架中,对于min相对于Inf和max相对于Sup同样成立。由于t -范数(s -范数)是交换和结合的,我们可以从给定的t -范数/spl tau/ (s -范数/spl sigma/)构造一个all-/spl tau/-量词(ex-/spl sigma/-量词)。这些量词用公理(t量词和s量词)来表征。此外,我们证明了生成过程对于任意t量词(s量词)是“完全的”,并且是唯一可逆的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On T-quantifiers and S-quantifiers
We show how the "classical" theory of T-norms and S-norms of fuzzy logic can be generalized to a theory of T-quantifiers and S-quantifiers, respectively. The key idea leading to this generalization is the fact that the (infinite) iteration of the two-valued conjunction and disjunction gives the two-valued all-quantifier and ex-quantifier, respectively. In the framework of fuzzy logic the same holds for min with respect to Inf and for max with respect to Sup. As a T-norm (S-norm) is commutative and associative, we can construct an all-/spl tau/-quantifier (an ex-/spl sigma/-quantifier) from a given T-norm /spl tau/ (S-norm /spl sigma/). These quantifiers are characterized by axioms (T-quantifiers and S-quantifiers). Furthermore we show that the generating procedure is "complete" with respect to arbitrary T-quantifiers (S-quantifiers) and uniquely reversible.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信