{"title":"高光谱异常变化检测算法分析","authors":"Yair Elhadad, S. Rotman, D. Blumberg","doi":"10.1109/WHISPERS.2016.8071746","DOIUrl":null,"url":null,"abstract":"In this paper, we test anomaly change detection algorithms in hyperspectral images. Focusing on difference-based algorithms, our goal is to optimize performance using new methods that utilize the spatial and statistical characteristics of the images. These methods increase the probability of detection while minimizing false alarms. The algorithms are tested on the hyperspectral images of the Rochester Institute of Technology (RIT).","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"22 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of hyperspectral anomaly change detection algorithms\",\"authors\":\"Yair Elhadad, S. Rotman, D. Blumberg\",\"doi\":\"10.1109/WHISPERS.2016.8071746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we test anomaly change detection algorithms in hyperspectral images. Focusing on difference-based algorithms, our goal is to optimize performance using new methods that utilize the spatial and statistical characteristics of the images. These methods increase the probability of detection while minimizing false alarms. The algorithms are tested on the hyperspectral images of the Rochester Institute of Technology (RIT).\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"22 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of hyperspectral anomaly change detection algorithms
In this paper, we test anomaly change detection algorithms in hyperspectral images. Focusing on difference-based algorithms, our goal is to optimize performance using new methods that utilize the spatial and statistical characteristics of the images. These methods increase the probability of detection while minimizing false alarms. The algorithms are tested on the hyperspectral images of the Rochester Institute of Technology (RIT).