高光谱异常变化检测算法分析

Yair Elhadad, S. Rotman, D. Blumberg
{"title":"高光谱异常变化检测算法分析","authors":"Yair Elhadad, S. Rotman, D. Blumberg","doi":"10.1109/WHISPERS.2016.8071746","DOIUrl":null,"url":null,"abstract":"In this paper, we test anomaly change detection algorithms in hyperspectral images. Focusing on difference-based algorithms, our goal is to optimize performance using new methods that utilize the spatial and statistical characteristics of the images. These methods increase the probability of detection while minimizing false alarms. The algorithms are tested on the hyperspectral images of the Rochester Institute of Technology (RIT).","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"22 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of hyperspectral anomaly change detection algorithms\",\"authors\":\"Yair Elhadad, S. Rotman, D. Blumberg\",\"doi\":\"10.1109/WHISPERS.2016.8071746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we test anomaly change detection algorithms in hyperspectral images. Focusing on difference-based algorithms, our goal is to optimize performance using new methods that utilize the spatial and statistical characteristics of the images. These methods increase the probability of detection while minimizing false alarms. The algorithms are tested on the hyperspectral images of the Rochester Institute of Technology (RIT).\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"22 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对高光谱图像中的异常变化检测算法进行了测试。专注于基于差分的算法,我们的目标是使用利用图像的空间和统计特征的新方法来优化性能。这些方法增加了检测的概率,同时最大限度地减少了误报。算法在罗彻斯特理工学院(RIT)的高光谱图像上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of hyperspectral anomaly change detection algorithms
In this paper, we test anomaly change detection algorithms in hyperspectral images. Focusing on difference-based algorithms, our goal is to optimize performance using new methods that utilize the spatial and statistical characteristics of the images. These methods increase the probability of detection while minimizing false alarms. The algorithms are tested on the hyperspectral images of the Rochester Institute of Technology (RIT).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信