{"title":"利用多智能体的内在异质性减少理想觅食任务中的空间干扰","authors":"C. Bennett, J. Lawry, S. Bullock","doi":"10.1162/isal_a_00522","DOIUrl":null,"url":null,"abstract":"Typically, collective behaviour research has tended to focus on behaviour arising in populations of homogeneous agents. However, humans, animals, robots and software agents typically exhibit various forms of heterogeneity . In natural systems, this heterogeneity has often been associated with improved performance. In this work, we ask whether spatial interference within a population of co-operating mobile agents can be managed effectively via conflict resolution mechanisms that exploit the population’s intrinsic heterogeneity. An idealised model of foraging is presented in which a population of simulated ant-like agents is tasked with making as many journeys as possible back and forth along a route that includes tunnels that are wide enough for only one agent. Four conflict resolution schemes are used for determining which agent has priority when two or more meet within a tunnel. These schemes are tested in the context of heterogeneous populations of varying size. The findings demonstrate that a conflict resolution mechanism that exploits agent heterogeneity can achieve a significant reduction in the impact of spatial interference. However, whether or not a particular scheme is successful depends on how the heterogeneity that it exploits is implicated in the population-wide dynamics that underpin system-level performance.","PeriodicalId":309725,"journal":{"name":"The 2022 Conference on Artificial Life","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploiting Intrinsic Multi-Agent Heterogeneity for Spatial Interference Reduction in an Idealised Foraging Task\",\"authors\":\"C. Bennett, J. Lawry, S. Bullock\",\"doi\":\"10.1162/isal_a_00522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typically, collective behaviour research has tended to focus on behaviour arising in populations of homogeneous agents. However, humans, animals, robots and software agents typically exhibit various forms of heterogeneity . In natural systems, this heterogeneity has often been associated with improved performance. In this work, we ask whether spatial interference within a population of co-operating mobile agents can be managed effectively via conflict resolution mechanisms that exploit the population’s intrinsic heterogeneity. An idealised model of foraging is presented in which a population of simulated ant-like agents is tasked with making as many journeys as possible back and forth along a route that includes tunnels that are wide enough for only one agent. Four conflict resolution schemes are used for determining which agent has priority when two or more meet within a tunnel. These schemes are tested in the context of heterogeneous populations of varying size. The findings demonstrate that a conflict resolution mechanism that exploits agent heterogeneity can achieve a significant reduction in the impact of spatial interference. However, whether or not a particular scheme is successful depends on how the heterogeneity that it exploits is implicated in the population-wide dynamics that underpin system-level performance.\",\"PeriodicalId\":309725,\"journal\":{\"name\":\"The 2022 Conference on Artificial Life\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2022 Conference on Artificial Life\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/isal_a_00522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2022 Conference on Artificial Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/isal_a_00522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting Intrinsic Multi-Agent Heterogeneity for Spatial Interference Reduction in an Idealised Foraging Task
Typically, collective behaviour research has tended to focus on behaviour arising in populations of homogeneous agents. However, humans, animals, robots and software agents typically exhibit various forms of heterogeneity . In natural systems, this heterogeneity has often been associated with improved performance. In this work, we ask whether spatial interference within a population of co-operating mobile agents can be managed effectively via conflict resolution mechanisms that exploit the population’s intrinsic heterogeneity. An idealised model of foraging is presented in which a population of simulated ant-like agents is tasked with making as many journeys as possible back and forth along a route that includes tunnels that are wide enough for only one agent. Four conflict resolution schemes are used for determining which agent has priority when two or more meet within a tunnel. These schemes are tested in the context of heterogeneous populations of varying size. The findings demonstrate that a conflict resolution mechanism that exploits agent heterogeneity can achieve a significant reduction in the impact of spatial interference. However, whether or not a particular scheme is successful depends on how the heterogeneity that it exploits is implicated in the population-wide dynamics that underpin system-level performance.