{"title":"一种新型随机编码混合光栅干涉波前传感器的研究与应用","authors":"Yongying Yang, Rui Zhang, Zijian Liang, Pin Cao","doi":"10.1117/12.2510892","DOIUrl":null,"url":null,"abstract":"In this paper, a novel randomly encoded hybrid grating (REHG) interferometric wavefront sensor with the features of high-precision, high-resolution, high-dynamic-range and anti-vibration is proposed. The REHG consists of a randomly encoded binary amplitude grating and a phase chessboard. The far filed Fraunhofer diffractions only contain ±1 orders in two orthogonal directions. Different from the cross grating lateral shearing interferometer (CGLSI), there is no need of order selection mask for quadriwave lateral shearing interference. Without the influence of periodical Talbot effect, a continuously variable shear ratio can be obtained with the REHG, which makes it possible to control the dynamic range and measurement sensitivity of the wavefront sensor. A high-precision calibration method for shear ratio based on the shearing wavefront feature extraction and the generalized wavefront retrieval algorithm are employed to ensure the accuracy of the wavefront measurement results. The REHG wavefront sensor can work in collimated beam and convergent beam modes. Due to self-referenced and common-path characteristics, the REHG wavefront sensor can applied to different application fields in situ. Compared to the ZYGO interferometer, the results of the optical aberration and spherical surface measured by the REHG are highly precise and also show good repeatability. By applying two REHG wavefront sensors with different shear ratio, a wideband sensitivity-enhanced interferometric microscopy with real-time visualization can retrofit existing bright-field microscopes into quantitative phase microscopes.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and application of a novel randomly encoded hybrid grating interferometric wavefront sensor\",\"authors\":\"Yongying Yang, Rui Zhang, Zijian Liang, Pin Cao\",\"doi\":\"10.1117/12.2510892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel randomly encoded hybrid grating (REHG) interferometric wavefront sensor with the features of high-precision, high-resolution, high-dynamic-range and anti-vibration is proposed. The REHG consists of a randomly encoded binary amplitude grating and a phase chessboard. The far filed Fraunhofer diffractions only contain ±1 orders in two orthogonal directions. Different from the cross grating lateral shearing interferometer (CGLSI), there is no need of order selection mask for quadriwave lateral shearing interference. Without the influence of periodical Talbot effect, a continuously variable shear ratio can be obtained with the REHG, which makes it possible to control the dynamic range and measurement sensitivity of the wavefront sensor. A high-precision calibration method for shear ratio based on the shearing wavefront feature extraction and the generalized wavefront retrieval algorithm are employed to ensure the accuracy of the wavefront measurement results. The REHG wavefront sensor can work in collimated beam and convergent beam modes. Due to self-referenced and common-path characteristics, the REHG wavefront sensor can applied to different application fields in situ. Compared to the ZYGO interferometer, the results of the optical aberration and spherical surface measured by the REHG are highly precise and also show good repeatability. By applying two REHG wavefront sensors with different shear ratio, a wideband sensitivity-enhanced interferometric microscopy with real-time visualization can retrofit existing bright-field microscopes into quantitative phase microscopes.\",\"PeriodicalId\":115119,\"journal\":{\"name\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2510892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2510892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research and application of a novel randomly encoded hybrid grating interferometric wavefront sensor
In this paper, a novel randomly encoded hybrid grating (REHG) interferometric wavefront sensor with the features of high-precision, high-resolution, high-dynamic-range and anti-vibration is proposed. The REHG consists of a randomly encoded binary amplitude grating and a phase chessboard. The far filed Fraunhofer diffractions only contain ±1 orders in two orthogonal directions. Different from the cross grating lateral shearing interferometer (CGLSI), there is no need of order selection mask for quadriwave lateral shearing interference. Without the influence of periodical Talbot effect, a continuously variable shear ratio can be obtained with the REHG, which makes it possible to control the dynamic range and measurement sensitivity of the wavefront sensor. A high-precision calibration method for shear ratio based on the shearing wavefront feature extraction and the generalized wavefront retrieval algorithm are employed to ensure the accuracy of the wavefront measurement results. The REHG wavefront sensor can work in collimated beam and convergent beam modes. Due to self-referenced and common-path characteristics, the REHG wavefront sensor can applied to different application fields in situ. Compared to the ZYGO interferometer, the results of the optical aberration and spherical surface measured by the REHG are highly precise and also show good repeatability. By applying two REHG wavefront sensors with different shear ratio, a wideband sensitivity-enhanced interferometric microscopy with real-time visualization can retrofit existing bright-field microscopes into quantitative phase microscopes.