一种新型随机编码混合光栅干涉波前传感器的研究与应用

Yongying Yang, Rui Zhang, Zijian Liang, Pin Cao
{"title":"一种新型随机编码混合光栅干涉波前传感器的研究与应用","authors":"Yongying Yang, Rui Zhang, Zijian Liang, Pin Cao","doi":"10.1117/12.2510892","DOIUrl":null,"url":null,"abstract":"In this paper, a novel randomly encoded hybrid grating (REHG) interferometric wavefront sensor with the features of high-precision, high-resolution, high-dynamic-range and anti-vibration is proposed. The REHG consists of a randomly encoded binary amplitude grating and a phase chessboard. The far filed Fraunhofer diffractions only contain ±1 orders in two orthogonal directions. Different from the cross grating lateral shearing interferometer (CGLSI), there is no need of order selection mask for quadriwave lateral shearing interference. Without the influence of periodical Talbot effect, a continuously variable shear ratio can be obtained with the REHG, which makes it possible to control the dynamic range and measurement sensitivity of the wavefront sensor. A high-precision calibration method for shear ratio based on the shearing wavefront feature extraction and the generalized wavefront retrieval algorithm are employed to ensure the accuracy of the wavefront measurement results. The REHG wavefront sensor can work in collimated beam and convergent beam modes. Due to self-referenced and common-path characteristics, the REHG wavefront sensor can applied to different application fields in situ. Compared to the ZYGO interferometer, the results of the optical aberration and spherical surface measured by the REHG are highly precise and also show good repeatability. By applying two REHG wavefront sensors with different shear ratio, a wideband sensitivity-enhanced interferometric microscopy with real-time visualization can retrofit existing bright-field microscopes into quantitative phase microscopes.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and application of a novel randomly encoded hybrid grating interferometric wavefront sensor\",\"authors\":\"Yongying Yang, Rui Zhang, Zijian Liang, Pin Cao\",\"doi\":\"10.1117/12.2510892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel randomly encoded hybrid grating (REHG) interferometric wavefront sensor with the features of high-precision, high-resolution, high-dynamic-range and anti-vibration is proposed. The REHG consists of a randomly encoded binary amplitude grating and a phase chessboard. The far filed Fraunhofer diffractions only contain ±1 orders in two orthogonal directions. Different from the cross grating lateral shearing interferometer (CGLSI), there is no need of order selection mask for quadriwave lateral shearing interference. Without the influence of periodical Talbot effect, a continuously variable shear ratio can be obtained with the REHG, which makes it possible to control the dynamic range and measurement sensitivity of the wavefront sensor. A high-precision calibration method for shear ratio based on the shearing wavefront feature extraction and the generalized wavefront retrieval algorithm are employed to ensure the accuracy of the wavefront measurement results. The REHG wavefront sensor can work in collimated beam and convergent beam modes. Due to self-referenced and common-path characteristics, the REHG wavefront sensor can applied to different application fields in situ. Compared to the ZYGO interferometer, the results of the optical aberration and spherical surface measured by the REHG are highly precise and also show good repeatability. By applying two REHG wavefront sensors with different shear ratio, a wideband sensitivity-enhanced interferometric microscopy with real-time visualization can retrofit existing bright-field microscopes into quantitative phase microscopes.\",\"PeriodicalId\":115119,\"journal\":{\"name\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2510892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2510892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种高精度、高分辨率、高动态范围和抗振动的新型随机编码混合光栅干涉波前传感器。REHG由一个随机编码的二进制振幅光栅和一个相位棋盘组成。远场弗劳恩霍夫衍射在两个正交方向上只包含±1阶。与交叉光栅横向剪切干涉仪(CGLSI)不同,四波横向剪切干涉不需要选阶掩模。在不受周期性塔尔博特效应影响的情况下,可以获得连续可变的剪切比,从而可以控制波前传感器的动态范围和测量灵敏度。采用基于剪切波前特征提取和广义波前检索算法的剪切比高精度标定方法,保证了波前测量结果的准确性。REHG波前传感器可以工作在准直光束和会聚光束模式下。由于具有自参考和共程特性,REHG波前传感器可以应用于不同的原位应用领域。与ZYGO干涉仪相比,REHG的光学像差和球面测量结果精度高,且具有良好的重复性。通过应用两个不同剪切比的REHG波前传感器,实现了一种实时可视化的宽带增敏干涉显微镜,将现有的明场显微镜改造为定量相显微镜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research and application of a novel randomly encoded hybrid grating interferometric wavefront sensor
In this paper, a novel randomly encoded hybrid grating (REHG) interferometric wavefront sensor with the features of high-precision, high-resolution, high-dynamic-range and anti-vibration is proposed. The REHG consists of a randomly encoded binary amplitude grating and a phase chessboard. The far filed Fraunhofer diffractions only contain ±1 orders in two orthogonal directions. Different from the cross grating lateral shearing interferometer (CGLSI), there is no need of order selection mask for quadriwave lateral shearing interference. Without the influence of periodical Talbot effect, a continuously variable shear ratio can be obtained with the REHG, which makes it possible to control the dynamic range and measurement sensitivity of the wavefront sensor. A high-precision calibration method for shear ratio based on the shearing wavefront feature extraction and the generalized wavefront retrieval algorithm are employed to ensure the accuracy of the wavefront measurement results. The REHG wavefront sensor can work in collimated beam and convergent beam modes. Due to self-referenced and common-path characteristics, the REHG wavefront sensor can applied to different application fields in situ. Compared to the ZYGO interferometer, the results of the optical aberration and spherical surface measured by the REHG are highly precise and also show good repeatability. By applying two REHG wavefront sensors with different shear ratio, a wideband sensitivity-enhanced interferometric microscopy with real-time visualization can retrofit existing bright-field microscopes into quantitative phase microscopes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信