恒模混合递推和最小均方算法的性能可与无气味卡尔曼滤波相媲美

V. Ranganathan, G. Prabha, K. Narayanankutty
{"title":"恒模混合递推和最小均方算法的性能可与无气味卡尔曼滤波相媲美","authors":"V. Ranganathan, G. Prabha, K. Narayanankutty","doi":"10.1109/INDICON.2016.7838889","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an adaptive filtering algorithm, Hybrid Recursive and Least Mean Square-based Constant Modulus Algorithm (RLS-LMS-CMA) for optimized blind beamforming for a Uniform Linear Array (ULA). We consider that Recursive Least Square-based Constant Modulus Algorithm (RLS-CMA) and Least Mean Square-based Constant Modulus Algorithm (LMS-CMA) algorithms are time tested. Therefore, we investigated a combination of RLS-LMS-CMA algorithm. We achieve similar tracking performance when compared to Unscented Kalman Filter-based Constant Modulus Algorithm (UKF-CMA) with minimal computational complexity. Simulations are carried out to compare the performance of RLS-LMS-CMA with other state-of-the-art algorithms. Results obtained indicate that proposed algorithm leads to an equivalent tracking ability and convergence rate of UKF-CMA algorithm.","PeriodicalId":283953,"journal":{"name":"2016 IEEE Annual India Conference (INDICON)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Constant modulus hybrid recursive and least mean squared algorithm performance comparable to unscented Kalman filter for blind beamforming\",\"authors\":\"V. Ranganathan, G. Prabha, K. Narayanankutty\",\"doi\":\"10.1109/INDICON.2016.7838889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an adaptive filtering algorithm, Hybrid Recursive and Least Mean Square-based Constant Modulus Algorithm (RLS-LMS-CMA) for optimized blind beamforming for a Uniform Linear Array (ULA). We consider that Recursive Least Square-based Constant Modulus Algorithm (RLS-CMA) and Least Mean Square-based Constant Modulus Algorithm (LMS-CMA) algorithms are time tested. Therefore, we investigated a combination of RLS-LMS-CMA algorithm. We achieve similar tracking performance when compared to Unscented Kalman Filter-based Constant Modulus Algorithm (UKF-CMA) with minimal computational complexity. Simulations are carried out to compare the performance of RLS-LMS-CMA with other state-of-the-art algorithms. Results obtained indicate that proposed algorithm leads to an equivalent tracking ability and convergence rate of UKF-CMA algorithm.\",\"PeriodicalId\":283953,\"journal\":{\"name\":\"2016 IEEE Annual India Conference (INDICON)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Annual India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDICON.2016.7838889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Annual India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2016.7838889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种自适应滤波算法,混合递归和基于最小均方的恒模算法(RLS-LMS-CMA),用于优化均匀线性阵列(ULA)的盲波束形成。我们认为基于递推最小二乘的恒模算法(RLS-CMA)和基于最小均方的恒模算法(LMS-CMA)是经过时间检验的。因此,我们研究了RLS-LMS-CMA算法的组合。与基于Unscented卡尔曼滤波的恒模算法(UKF-CMA)相比,我们以最小的计算复杂度实现了相似的跟踪性能。通过仿真比较了RLS-LMS-CMA算法与其他先进算法的性能。结果表明,该算法具有与UKF-CMA算法相当的跟踪能力和收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constant modulus hybrid recursive and least mean squared algorithm performance comparable to unscented Kalman filter for blind beamforming
In this paper, we propose an adaptive filtering algorithm, Hybrid Recursive and Least Mean Square-based Constant Modulus Algorithm (RLS-LMS-CMA) for optimized blind beamforming for a Uniform Linear Array (ULA). We consider that Recursive Least Square-based Constant Modulus Algorithm (RLS-CMA) and Least Mean Square-based Constant Modulus Algorithm (LMS-CMA) algorithms are time tested. Therefore, we investigated a combination of RLS-LMS-CMA algorithm. We achieve similar tracking performance when compared to Unscented Kalman Filter-based Constant Modulus Algorithm (UKF-CMA) with minimal computational complexity. Simulations are carried out to compare the performance of RLS-LMS-CMA with other state-of-the-art algorithms. Results obtained indicate that proposed algorithm leads to an equivalent tracking ability and convergence rate of UKF-CMA algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信